
ibm.com/redbooks

Developing SIP and IP
Multimedia Subsystem
(IMS) Applications

Edward Oguejiofor
Philippe Bazot Bruno Georges
Rebecca Huber Callum Jackson
Jochen Kappel Cameron Martin
Bala S. Subramanian Abhijit Sur

Hands-on introduction to toolkits and
development environments

Learn to develop converged and
composite services

Programming guidelines
and working examples

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Developing SIP and IP Multimedia Subsystem (IMS)
Applications

February 2007

International Technical Support Organization

SG24-7255-00

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (February 2007)

This edition applies to IBM WebSphere Application Server Network Deployment, Version 6.1,
IBM WebSphere IP Multimedia Subsystem Connector V6.1, IBM WebSphere Presence Server
V6.1, IBM WebSphere Telecom Web Services Server V6.1 and IBM WebSphere® Integration
Developer Version 6.0.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiv
Become a published author . xvii
Comments welcome. xviii

Part 1. Introduction to SIP and IMS . 1

Chapter 1. Introduction to Session Initiation Protocol (SIP) 3
1.1 SIP overview . 4
1.2 SIP architectural components . 7
1.3 SIP messages . 9

1.3.1 SIP requests . 11
1.3.2 SIP responses. 13
1.3.3 SIP transactions . 15
1.3.4 SIP dialogs . 16
1.3.5 A sample SIP call flow. 17

1.4 SIP Java development . 20
1.4.1 JAIN SIP API. 20
1.4.2 SIP Servlet API . 23

1.5 Examples of SIP application . 26

Chapter 2. Introduction to IP Multimedia Subsystem 27
2.1 IMS overview. 28

2.1.1 IMS vision and history . 28
2.2 Elements of IMS architecture . 30

2.2.1 Functional components . 31
2.2.2 Reference points . 33
2.2.3 Protocols . 35
2.2.4 Functional planes . 36

2.3 Services in IMS . 38
2.3.1 Service architecture . 38

Part 2. Application development technologies . 41

Chapter 3. Introduction to IBM SIP and IMS service creation 43
3.1 Overview . 44

© Copyright IBM Corp. 2007. All rights reserved. iii

3.2 IBM Unified Service Creation Environment . 45
3.3 Types of SIP and IMS applications . 49
3.4 The SIP and IMS service creation environment . 51

3.4.1 IBM WebSphere Application Server Toolkit 53
3.4.2 IBM IMS Enablement Toolkit. 55
3.4.3 IBM Telecom Web Services Toolkit . 57
3.4.4 IMS Enablement Toolkit . 58

3.5 The service execution environment. 60

Chapter 4. IBM WebSphere Application Server Toolkit 63
4.1 AST overview . 64
4.2 Developing SIP servlet application . 66

4.2.1 SIP only applications. 67
4.2.2 Converged SIP/HTTP applications . 69
4.2.3 SIP servlet deployment . 71
4.2.4 Sample SIP services . 82
4.2.5 Hardware and software requirements . 88

Chapter 5. IBM IMS Enablement Toolkit . 89
5.1 IMS Enablement Toolkit overview . 90
5.2 Developing IMS foundation applications . 90

5.2.1 Diameter client application . 97
5.2.2 Presence Server components. 100
5.2.3 Parlay X Web Services . 101

5.3 Sample IMS foundation applications . 101
5.3.1 ISC Interface sample. 101
5.3.2 Diameter client samples . 110

Chapter 6. IBM WebSphere Integration Developer. 119
6.1 Overview . 120
6.2 Working with IBM WebSphere Integration Developer 120

6.2.1 Key concepts. 120
6.2.2 Modules. 122

6.3 Components . 123
6.3.1 Business Integration perspective and views 126
6.3.2 Adding custom logic to BPEL processes . 128

6.4 IMS service components . 130
6.4.1 Assembling components . 133
6.4.2 Component tests . 134

6.5 Technical information . 141
6.5.1 Packaging . 141
6.5.2 Supported platforms . 142

Chapter 7. IBM Telecom Web Services Server Toolkit 145

iv Developing SIP and IP Multimedia Subsystem (IMS) Applications

7.1 Introduction . 146
7.1.1 Mediation services . 147
7.1.2 TWSS Mediation primitives . 148
7.1.3 TWSS default message flow . 149

7.2 The IBM Telecom Web Services Server Toolkit 150
7.2.1 Importing TWSS mediation flows . 151
7.2.2 Working with TWSS mediation flows . 154

Chapter 8. Introduction to the IBM service execution environment 159
8.1 Overview of the IBM IMS solution . 160

8.1.1 The service execution environment . 162
8.2 The IBM WebSphere Application Server. 165

8.2.1 WebSphere Application Server SIP support 167
8.3 WebSphere IMS Connector . 173

8.3.1 ISC interface . 174
8.3.2 Diameter services . 178
8.3.3 IBM WebSphere Diameter Enabler. 180

8.4 WebSphere Presence Server . 182
8.4.1 IBM WebSphere Presence Server Component 182
8.4.2 The Presence Management enabler. 184

8.5 IBM WebSphere Group List Server. 185
8.5.1 The role of Group List Management . 187
8.5.2 XDM/XCAP Interface . 190

8.6 Telecom Web Services Server . 193
8.6.1 Telecom Web Services Access Gateway . 194

8.7 Telecom Web Services Server service implementations 196
8.7.1 Common components . 198
8.7.2 Service Policy Manager . 199

8.8 WebSphere Enterprise Service Bus . 199
8.9 WebSphere Process Server . 201

Part 3. SIP applications . 203

Chapter 9. Developing SIP applications . 205
9.1 Overview of SIP applications. 206

9.1.1 SIP Servlet container . 206
9.2 SIP Servlet . 207

9.2.1 Differences between SIP and HTTP Servlet 207
9.2.2 Converged servlet . 209

9.3 Elements of SIP applications. 209
9.3.1 Receiving requests . 209
9.3.2 Parsing messages. 210
9.3.3 Creating responses . 212
9.3.4 Creating requests . 213

 Contents v

9.3.5 Receiving responses. 216
9.3.6 Proxies . 217
9.3.7 Mapping requests to servlets . 219
9.3.8 Sessions . 221
9.3.9 Listeners and events . 223
9.3.10 Timers . 225
9.3.11 Security . 226
9.3.12 Converged servlet . 227

9.4 Best practices . 228
9.4.1 Application layering . 229
9.4.2 Message processing . 230
9.4.3 Implement specification design requirements 230
9.4.4 Runtime development considerations . 231

Chapter 10. Sample SIP applications . 233
10.1 Application overview . 234
10.2 Registrar and proxy application. 234

10.2.1 The scenario . 234
10.3 Creating the SIP application project . 235

10.3.1 Developing the SIP Servlets . 238
10.3.2 Configure User Agents . 252
10.3.3 Testing the Registrar and proxy application 253

10.4 Third Party Call Control application. 256
10.4.1 Overview . 257
10.4.2 Develop using the Application Server Toolkit 258
10.4.3 Compose the Application . 278
10.4.4 Deploy the converged SIP/J2EE application. 280
10.4.5 Testing the Third Party Call Control application 286
10.4.6 Debug and trace the application . 289

Part 4. Developing IMS applications . 299

Chapter 11. Designing IMS services . 301
11.1 Overview of IMS composite services . 302

11.1.1 Composite services architecture . 302
11.2 Composite services choreography . 303

11.2.1 Composite services orchestration . 305
11.3 Designing composite services. 305

11.3.1 Design process . 305
11.3.2 SIP Servlets as Web Services . 307
11.3.3 Deciding when to use BPEL . 311
11.3.4 Choosing ESB Software . 312

11.4 Sample application design . 312
11.4.1 Objectives of the sample application. 312

vi Developing SIP and IP Multimedia Subsystem (IMS) Applications

11.4.2 The business scenario . 313
11.4.3 The use case model . 314
11.4.4 The component model . 317
11.4.5 Component flow . 322

11.5 SIP Servlet design. 328
11.5.1 BPEL design . 336

Chapter 12. Implementing the IMS sample service 341
12.1 Implementation overview. 342
12.2 SIP Servlet development. 342

12.2.1 Create a new SIP project . 342
12.2.2 Create a new SIP Servlet . 344
12.2.3 Complete the SIP Servlet code . 352
12.2.4 Export the application for deployment. 360

12.3 BPEL development . 361
12.3.1 Create a new business integration module 361
12.3.2 Create the business object . 364
12.3.3 Create the interface for the BPEL process 368
12.3.4 Import the WSDL files . 373
12.3.5 Create the business process. 383
12.3.6 Add partner references . 387
12.3.7 Add process logic . 390
12.3.8 Assemble the FindHelp module . 416

12.4 Export the FindHelp WSDL files . 427
12.4.1 Unit test the FindHelp module. 430

12.5 The location simulator . 435

Chapter 13. Sample IMS application test environment 439
13.1 Overview of the test environment . 440
13.2 Setting up the test environment. 445

13.2.1 Group List Server setup . 445
13.2.2 Location server setup . 448
13.2.3 Application deployment . 450
13.2.4 Device client setup . 459
13.2.5 Installing the IBM Diameter CCF Simulator 465

13.3 Executing the test scenarios . 466
13.3.1 Use Case 1: Administrator adds service topic 467
13.3.2 Use Case 2: Publish Technician Status . 469
13.3.3 Use Case 3: Caller requests FindHelp Service. 473

13.4 Problem determination and resolution. 480
13.5 Step-by-step tracing . 480

13.5.1 Enable SIP debug tracing on the Linux test server 486
13.5.2 Tracing SIP messages using Ethereal . 488

 Contents vii

13.6 Log files . 493

Part 5. Appendixes . 497

Appendix A. Installing the application development environment. 499
A.1 Installing the SIP AST . 500

A.1.1 Starting the SIP AST. 502
A.2 SIP device client installation . 502

A.2.1 SipXphone . 503
A.2.2 X-Lite . 505
A.2.3 SJPhone . 507

A.3 Installing the IMS Enablement Toolkit. 508
A.3.1 Verify the installation of the IMS Enablement Toolkit 513

A.4 Installing WebSphere Integration Developer . 515
A.4.1 Update WebSphere Integration Developer. 521
A.4.2 Apply required fixes . 522

A.5 Installing the Telecom Web Services Server plug-in 524
A.5.1 Extract the ESB mediation flows and import them into WID. 527

Appendix B. Installing the sample application test environment 531
B.1 IBM WebSphere Application Server 6.1 . 532
B.2 IBM WebSphere Telecom Web Services Server 540

B.2.1 Create the WebSphere Application Server profile 541
B.2.2 Install base binaries . 544
B.2.3 Configure DB2 . 546
B.2.4 Configure Service Integration Bus . 554
B.2.5 Configure JDBC . 561
B.2.6 Tune the Application Server . 567
B.2.7 Deploy TWSS Applications. 570
B.2.8 Verify the installation. 582
B.2.9 Troubleshoot the installation. 583

B.3 IBM WebSphere Group List Server component 586
B.3.1 Install base binaries . 587
B.3.2 Create WebSphere Application Server profile 587
B.3.3 Configure DB2 . 589
B.3.4 Configure the LDAP directory . 591
B.3.5 Configure users and groups . 592
B.3.6 Configure JDBC and data sources . 594
B.3.7 Tune the Application Server . 599
B.3.8 Deploy GLS application . 603
B.3.9 Install the Self Care portlet . 606
B.3.10 Install the command line interface . 609
B.3.11 Administration . 609

B.4 IBM WebSphere Presence Server component . 611

viii Developing SIP and IP Multimedia Subsystem (IMS) Applications

B.4.1 Install base binaries . 611
B.4.2 Create WebSphere Application Server profile 611
B.4.3 Configure DB2 . 612

B.5 Create the Service Integration Bus and bus members 615
B.5.1 Configure JDBC and data source . 618

B.6 Deploy PS application. 621
B.7 IBM WebSphere Diameter Enabler component 625

B.7.1 Install base binaries . 626
B.7.2 Create WebSphere Application Server profile 626
B.7.3 Deploy the Diameter Enabler application on WebSphere Application

Server . 627
B.7.4 Deploy Diameter Rf Web Services . 634

Appendix C. Additional material . 637
Locating the Web material . 637
Using the Web material . 637

System requirements for downloading the Web material 638
How to use the Web material . 638

Abbreviations and acronyms . 639

Related publications . 643
IBM Redbooks . 643
Other publications . 644
Online resources . 644
How to get IBM Redbooks . 645
Help from IBM . 645

Index . 647

 Contents ix

x Developing SIP and IP Multimedia Subsystem (IMS) Applications

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

ibm.com®
pSeries®
xSeries®
AIX®
BladeCenter®

DB2 Universal Database™
DB2®
IBM®
IMS™
Rational Unified Process®

Rational®
Redbooks™
Redbooks (logo) ™
Tivoli®
WebSphere®

The following terms are trademarks of other companies:

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

Enterprise JavaBeans, EJB, Java, JavaBeans, JavaScript, JavaServer, JavaServer Pages, JAIN, JDBC,
JDK, JMX, JSP, JVM, J2EE, J2ME, J2SE, Solaris, Sun, and all Java-based trademarks are trademarks of
Sun Microsystems, Inc. in the United States, other countries, or both.

DirectX, Expression, Internet Explorer, Microsoft, Windows Server, Windows, and the Windows logo are
trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Pentium, Xeon, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xii Developing SIP and IP Multimedia Subsystem (IMS) Applications

Preface

The convergence of Internet Protocol (IP) networks is enabling seamless
communications that combine data, voice, video and other information streams.
The true value of a converged IP network, however, is realized through the
converged applications that use the network productively. The key enabler to the
development of converged applications is the platform, for designing,
developing, testing, and deploying applications that integrate and compose
services.

This IBM® Redbook introduces IBM tools for creating converged Session
Initiation Protocol (SIP) and IP Multimedia Subsystem (IMS™) applications. It
provides programming guidelines and working examples that demonstrate how
to use the different development tools. It also provides hints and tips that can get
you up to speed quickly for developing converged applications.

The portfolio of products includes the IBM WebSphere® Application Server
Network Deployment, IBM WebSphere IP Multimedia Subsystem Connector,
IBM WebSphere Presence Server, IBM WebSphere Telecom Web Services
Server, and IBM WebSphere Integration Developer.

This book is structured into five parts:

� Part 1, “Introduction to SIP and IMS”, provides an overview of SIP and the
different components and protocols that make up SIP. It also presents an
overview of IMS, the specifications that define 3G (third generation)
architecture for telecommunications services.

� Part 2, “Application development technologies”, provides an overview of the
IBM service creation and execution environment. It highlights the features of
the different tools that are used for creating SIP, converged SIP and HTTP,
IMS foundation and IMS composite applications.

� Part 3, “SIP applications”, provides the programming guide for developing SIP
based converged applications. It includes working examples that demonstrate
use of IBM tools for application development.

� Part 4, “Developing IMS applications”, provides guidelines for developing
applications that use the IBM WebSphere IP Multimedia Subsystem
Connector, the IBM WebSphere Presence Server and the IBM WebSphere
Telecom Web Services Server. The working examples demonstrate how to
create composite services.

� Part 5, “Appendixes”, provides additional information about the installation
and configuration of the test environment and references to related

© Copyright IBM Corp. 2007. All rights reserved. xiii

publications and other useful information, including how to obtain the source
code for the sample applications.

This redbook is geared toward the diverse set of professionals that have the
responsibility for designing and developing SIP and IMS applications. These
include IT architects that develop the solution, and IT specialists, application
integrators, and developers who design, code, and test converged applications
and composite services.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

The IBM redbook team (front row - left to right: Edward Oguejiofor, Rebecca Huber,
Callum Jackson, and Bruno Georges; back row - left to right: Jochen Kappel, Philippe
Bazot and Cameron Martin). Participating remotely were Bala S. Subramanian and Abhijit
Sur, pictured below.

Edward Oguejiofor is a Project Leader at the International Technical Support
Organization, Raleigh Center. He has over 20 years experience in distributed
and enterprise systems architecture and design. His areas of expertise include
Web Services and service-oriented architecture. He also provides technical and
thought leadership in emerging technologies and collaborative services. He
holds a degree in Computer Science from Imperial College of Science and
Technology, University of London.

xiv Developing SIP and IP Multimedia Subsystem (IMS) Applications

Philippe Bazot is an IBM Certified IT Specialist and works at the European
Business Solutions Center at IBM La Gaude, France. He is currently working for
IBM WebSphere Business Partner Enablement and provides EMEA advanced
technical support to IBM Business Partners, by assessing and enabling them to
use IBM WebSphere IMS products portfolio. He has 23 years of experience in
networking software. He is also a Solution Architect, working in various areas,
such as Service Provider Development Environment, telco platforms, telephony,
networking and Internet. He holds a diploma from Ecole Superieure d'Electricite
in France.

Bruno Georges is an IBM Certified IT Specialist and works as a WebSphere
Technical Sales Specialist for South-East IOT Telco customers, mainly for
Service Delivery Portal and IMS solutions, from the IBM Center in La Gaude,
France. He has six years of experience in the wireless and telco industries. He
has worked at IBM for 21years. His areas of expertise include application
development, Java™ Application Servers, and Portal and their mobile
extensions, wireless technologies. He holds a diploma from Ecole Natioanle
Superieure des Arts et Metiers and a master’s degree from the University of
California (Berkeley).

Rebecca Huber is a Senior IT Architect in IBM Global Business Services,
Germany. She has 19 years of IT experience in the fields of application
development and project planning, and she has worked the last three years on
mobile telecommunications topics such as IMS, next generation HLR, and voice
messaging. She is an IBM certified Telecommunications IT Architect. Her areas
of expertise include end-to-end systems integration, application architecture and
development, and technical team leadership. She holds a degree in Computer
Science from Clemson University, South Carolina, USA.

Callum Jackson is an IT Specialist in ISSW, based in Hursley, United Kingdom,
and he specializes in Voice and IMS solutions. His engagements primarily regard
WebSphere Voice Response, WebSphere Voice Server and WebSphere
Application Server, WebSphere Process Server and WebSphere Portal. He has
more than five years experience working with Voice and integration with J2EE™
solutions. The past two years or more he has been involved in IMS solutions for
various customers.

Jochen Kappel is a Senior IT Architect in the IBM Telecom Solutions Lab in
Europe. He joined IBM in 2001, focusing on systems design that uses IBM
Service Provider Delivery Environment. He has 20 years of experience in
building solutions for wireless and telecommunication operators as well as
software development methodologies. He holds a diploma in Electrical
Engineering and Telecommunications from the Technical University Darmstadt,
Germany.

 Preface xv

Cameron Martin is a Consulting IT Specialist working for IBM Software Group in
Hursley, United Kingdom. He has over ten years of experience in the IT industry,
with six of those years spent advising clients on complex WebSphere Application
Server deployments across Europe and Asia Pacific. He is currently specializing
in SIP, IMS and, J2EE applications and infrastructures, with a focus in the areas
of performance, security and high availability. He holds a bachelor’s degree in
Business Information Technology from the University of New South Wales,
Australia.

Bala S. Subramanian is an IBM certified Senior IT Specialist for Business
Applications from Telecom and Media Dept., IBM Services, India. He is a Board
Member of Advisory Accreditation for IT Specialist and Asia Pacific IT Specialist
Discipline Leader. He has more than six years experience in the IT Industry and
specializes in service-oriented architecture (SOA). His expertise includes AIX®,
Linux®, Solaris™, WebSphere products and programming in Java, J2EE, Web
Services, portals, and XML. He focuses primarily in designing and developing
solutions, that use Java, J2EE, Web Services, and portal solutions. He holds five
IBM certifications, including: IBM WebSphere Application Server, WebSphere
Studio Developer, developing Web Services with WebSphere Studio and DB2®
Universal Database™. He is also a Sun™ Certified Java Programmer and SEI
PSP Level 5 Engineer from SEI, Carnegie Mellon University, Pittsburgh.
Additionally, he holds a degree in Computer Engineering from Madurai Kamaraj
University, TamilNadu, India.

Abhijit Sur has over 12 years of telecommunication industry experience
spanning several areas of OSS/BSS solutions, such as process improvements,
functional analysis, customization, implementation, configuration, and system
integration. He has been with IBM since 2002. Currently, as an Advisory
Solution Architect for the Communications sector, he is involved in designing
service-oriented architecture for third generation cellular operators and cellular
carriers, transforming their networks for a converged IMS platform. He holds a
master’s degree in Statistics from IIT Kanpur, India; and in Telecommunications
from the University of Colorado (Boulder). He has published several papers and
articles in technical journals and magazines. His research interests include
Vertical Handoffs, Spectrum Management and Web Services based
service-oriented architecture for next generation networks.

Thanks to the following people for their contributions to this project:

IBM Software Group

� Joan Boone
� Scott Broussard
� Erik J. Burckart
� Girish Dhanakshirur
� Joel Dunn

xvi Developing SIP and IP Multimedia Subsystem (IMS) Applications

� Ratna Garimella
� Yun Huang
� Ronnie Jones
� Jennifer King
� Tim Smith
� Ed Spring
� Cristi Nesbitt Ullmann
� Anthony Wrobel

IBM Software Group, WPLC, Haifa

� Danielle Volski
� Dror Yaffe

IBM Sales and Distribution, Communications Sector (Germany)

� Josef Reisinger

International Technical Support Organization, Raleigh Center

� Tamikia Barrow
� Margaret Ticknor
� Jeanne Tucker
� Linda Robinson

International Technical Support Organization, Poughkeepsie Center

� Michael B. Schwartz

International Technical Support Organization, Business Controls

� Erica B. Wazewski

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

xviii Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Introduction to
SIP and IMS

Part 1 provides an overview of SIP and the different components and protocols
that make up SIP. It also presents an overview of IMS, the specifications that
define 3G (third generation) architecture for telecommunications services.

Part 1

© Copyright IBM Corp. 2007. All rights reserved. 1

2 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 1. Introduction to Session
Initiation Protocol (SIP)

This chapter provides an overview of Session Initiation Protocol (SIP), the
different components that make up SIP, and the programming interface for
creating SIP applications that use Java programming language.

This chapter contains the following:

� SIP overview

� SIP architectural components

� SIP messages

� SIP Java development

� Examples of SIP application

1

© Copyright IBM Corp. 2007. All rights reserved. 3

1.1 SIP overview

Session Initiation Protocol (SIP) is an application-layer protocol for initiating,
modifying, or terminating communication and collaborative sessions over
Internet Protocol (IP) networks. A session could be an IP telephony call, a
multi-user conference that incorporate voice, video and data, instant messaging
chat or multi player online game. SIP can be used to invite participants to a
scheduled or already existing session. Participants can be a person, an
automated service or a physical device such as a handset. It can also be used to
add or remove media to a session.

A bit of history
SIP emerged in the mid-1990s from two proposals, Session Initiation Protocol
(SIP) by Mark Handley and Eve Schooler, and the Simple Conference Invitation
Protocol (SCIP) by Henning Schulzrinne that were submitted to the Multi-Party,
Multimedia Working Group of the Internet Engineering Task Force (IETF). The
two proposals were merged to form Session Initiation Protocol and was
approved as RFC 2543 by the IETF in March 1999. The final standard was
released as a part of RFC 3261 in 2002.

Interest in SIP has continued to grow and separate Work Groups are contributing
to the core standard and extensions that leverage SIP. The SIP Working Group
(WG) is chartered to maintain and continue the development of SIP as proposed
by RFC 3261. The SIP Working Group considers change requirements from
other working groups that develop systems based on SIP such as the SIPPING
(Session Initiation Protocol Project INvestiGation) working group, which analyzes
the application of SIP, the SIMPLE (Session Initiation Protocol for Instant
Messaging and Presence Leveraging Extensions) working group which is using
SIP for messaging and presence, and the XCON working group using SIP for
centralized conferencing.

Capabilities
In telecommunication networks, there are two categories of traffic. First of all
there is traffic related to control signaling (hereafter referred to as signaling)
which is used to establish, manage and terminate communication sessions. And
then there is the actual data traffic (for example voice). SIP signaling follows the
concept of common channel signaling, whereby the path used for the signaling
traffic is independent of the path used for the actual data traffic. Separation of
signaling traffic from media makes the session management more efficient, and
is also more adaptive to functional changes.

SIP signalling supports the following facets of multimedia session management.

4 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� User location

Enabling users to access telephony or other application features from remote
locations.

� User availability

Determining the willingness of the called parties to engage in communication
sessions.

� User capabilities

Determining the media and media parameters to be used for communication
sessions.

� Session setup

Establishing the session parameters for point-to-point and multiparty
sessions.

� Session management

Enabling the transfer and termination of sessions, the modification of session
parameters, and the invocation of session services.

Working with other protocols
SIP leverages existing Internet application protocols and standards such as the
Simple Mail Transfer Protocol (SMTP) and Hypertext Transfer Protocol (HTTP).
While HTTP provides integration of content (text, audio, video, links to other Web
pages) on Web pages, SIP integrates different media into sessions. SIP adopted
the request/response paradigm of HTTP, and many HTTP message headers and
codes (for example, error code - 404: Address not found). However there are
some key differences between SIP and HTTP. Unlike HTTP, SIP is a
peer-to-peer protocol. With HTTP, a Web server doesn't originate requests.
whereas any SIP user agent can send a request to initiate or modify a session.
Moreover, SIP has the provision of generating multiple responses (and possibly
to multiple destinations) from a single request. Another key difference from
architecture perspective is that HTTP services are typically hosted on an HTTP
server (which generates the response to requests), SIP servers (proxy server,
Redirect Server and Registrar discussed in 1.2, “SIP architectural components”
on page 7) provide intelligent services routing.

SIP uses Uniform Resource Identifier (URI) to identify participants and resources
in communication sessions. SIP URI is in a form similar to the mailto URL. Its
general form is:

sip:user:password@host:port;uri-parameters?headers

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 5

The following are examples of SIP URI:

� Calling a PSTN (Public Switched Telephone Network) phone

sip:1-112-233-4455@pstnnetwork.com;user=phone;

SIP parameters can be used to provide additional information, in this example
user=phone is used to indicate that the call is to a telephone number.

� Internet Call

sip:123-4567@itso.com;user=phone; context=privnet;

Context=privnet, in this case, indicates a private IP network, such as a
company’s corporate network, and the PSTN.

� Calling a personal computer

sip:johndoe@itso.com

You can also use a secure link, for example – sips:johndoe@itso.com. SIPS
indicates refers to a secure connection in the same way as https.

SIP uses DNS procedures to resolve SIP Uniform Resource Identifiers into the IP
address, port, and transport protocol. It also uses DNS to allow servers to send
response to backup clients if the primary client has failed.

For end-to-end functionality and services such as voice over IP (VoIP), SIP
works with a number of other protocols. Session Description Protocol (SDP)
defines the format for describing the characteristics and parameters of
multimedia sessions. The Real-time Transport Protocol (RTP) defines a
standardized packet format for delivering audio and video over the Internet, and
Real-time Transport Control Protocol, (RTCP) provides out-of-band control
information about the quality of the RTP data flow.

6 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 1-1 The SIP communication stack

1.2 SIP architectural components

In this section, we describe the architectural components of SIP - the user agent
and network servers. SIP messaging and the extensions which is introduced in
1.3, “SIP messages” on page 9 show how these components participate in call
flow to support SIP functionality.

Broadly speaking SIP networks consist of two basic components - SIP user
agent and SIP network server. The SIP user agents are the peer components
that initiate and answer calls.

SIP architecture define the following functional elements:

� User Agent

A SIP User Agent (UA) is an end device which can originate and receive SIP
calls. It can be a phone terminal (mobile, PDA or Laptop) or an endpoint such
as an answering machine. SIP supports both peer-to-peer and client server

Internet Protocol (IP)

Stream Control Stream Control
Transmission ProtocolTransmission Protocol

(SCTP)(SCTP)

Transmission Transmission
Control ProtocolControl Protocol

(TCP)(TCP)

User datagram User datagram
ProtocolProtocol
(UDP)(UDP)

Session Initiation ProtocolSession Initiation Protocol
(SIP)(SIP)

RTP/RTCPRTP/RTCP

SignalingSignaling
MediaMedia

TransportTransport

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 7

architectures. User agents act as peers, they find each other and negotiate
session characteristics.

� User Agent Server

In the client server model, when sending requests or receiving responses, a
SIP UA acts as the client, in which case it is referred to as the User Agent
Client (UAC). The receiving SIP UA acts as the server (receives and requests
and sends responses) and is referred to as the User Agent Server (UAS).
UAC and UAS are logical entities that are contained in every SIP User Agent.

� Back-to-Back UA (B2BUA)

When a SIP entity acts both as a User Agent Client, as well as the User Agent
Server it is referred to as the Back-to-Back User Agent (B2BUSA). It
generates requests to determine how the incoming request is to be
answered.

� Proxy server

The SIP proxy server is a key component of SIP infrastructure. Its role as an
edge routing server is similar to that of a Web proxy server. It provides routing
capabilities and supports functions such as authentication, accounting,
registration and security. The SIP proxy server is the first entity that receives
all outgoing requests from a SIP UA, it routes the request traversing
intermediate servers until it locates the server closest to the destination SIP
UA, which forwards the request to the called SIP UA. In the most common
scenarios there are usually two SIP proxy servers - one at the caller end and
one at the callee end.

Proxy Servers can be configured to be transaction stateful or stateless.
Stateless proxy servers receive incoming requests and simply pass on
responses without retaining any information about the transaction. On the
other hand, stateful proxy servers retain information about all incoming
requests, the server's responses and outgoing messages from the server. A
SIP infrastructure can contain a combination of stateful and stateless proxy
servers. The stateful servers can be configured closer to the SIP user agents
to collect billing and other user relevant data, whereas the stateless proxy
servers form the backbone of the network.

SIP proxy servers can perform 'forking' process, where it sends out SIP
INVITE to multiple devices at once. In the case where a user is registered at
multiple locations, a Forking Proxy Server would send an incoming SIP
INVITE message (for a session) to each registered location. When the user
responds from one of the locations (upon receiving a SIP OK message from
that location) the proxy server sends a SIP CANCEL message to the other
locations. In order to perform forking process, the proxy server needs to be
configured to be transaction stateful.

8 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� Registrar

The Registrar is a repository of user agents location information. The registrar
accepts registration requests from user agents and places the information
(the sip address and associated IP address) in location database. A SIP
Register message will tell the Registrar (and the network) at which address
(or multiple addresses) the user will be available henceforth (say office phone
during the day). Once the location or device changes the user agent has to
send another SIP Register message to the Registrar. SIP proxy servers (and
redirect servers) make use of the location information stored in the repository
to obtain the callee user agent location(s).

� Redirect Server

Redirect Servers respond to SIP request with an address where the SIP
message should be redirected. It maps a destination address (in the SIP
message) to one or more addresses and returns the new address list to the
originator of the SIP request. The location of the intended recipient is
retrieved from the location database maintained by the SIP Registrar.
Redirection is used for Call Forwarding and it also helps to reduce the
processing load on proxy servers by pushing the processing back to the
requesting clients.

1.3 SIP messages

SIP signaling - the setting up, modification and termination of communication and
collaboration sessions - is realized through the exchange of messages. There
are two types of messages: requests and responses. Requests are sent to
initiate some action and responses are sent as replies to requests
acknowledging receipt of requests and indicating the processing status.

Requests and responses share a common message format which consist of a
start-line, one or more header fields, an empty line indicating the end of the
header fields, and an optional message-body. The SIP message structure is
illustrated in Figure 1-2 on page 10.

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 9

Figure 1-2 Structure of SIP messages

The start-line in SIP messages can be either a request or a status line. Request
messages use the request line to set the type of request. Response messages
indicate whether the processing of a request is successful or not in the status
line.

SIP message headers consist of fields with name value pairs. Where some fields
are optional such as content type and length, some fields are mandatory for
every SIP message. Table 1-1 on page 11 list the mandatory header fields for
SIP messages.

Note: The start-line, message-header line, and the empty line are terminated
by a carriage-return line-feed sequence (CRLF). The message body is
optional, however the empty line is present even if the message-body is not.

SIP messageSIP message

startstart--lineline

requestrequest--lineline statusstatus--lineline

*message*message--headerheader

messagemessage--headersheaders

CRLFCRLF

[message[message--body]body]

messagemessage

10 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Table 1-1 SIP message mandatory header fields

1.3.1 SIP requests

SIP requests have a Request-line for their start-line. The format of a Request-line
is illustrated in Figure 1-3. It consists of three fields that are separated by a single
space (SP) character.

Figure 1-3 Format of a request message start-line

� Method

This field indicates the method to be performed. RFC 3261 identified six
methods: REGISTER, INVITE, ACK, CANCEL, BYE and OPTIONS. SIP
extensions documented in other RFCs have defined additional methods.
Table 1-2 on page 12presents a list of request methods and a brief
description of what each method does.

Field name Description

To The request destination’s SIP address

From Indicates the originator of the request

CSeq The command sequence that ensures messages are dealt with, in the
order they were generated.

Call-ID A randomly generated string that uniquely identify SIP sessions. SIP
proxy servers use Call-ID to identify messages belonging to a SIP
session.

Via Contains information about SIP devices a message has passed
through as it moves between caller and callee. The Via field is also
used to route responses in the reverse direction.

Contact Contains the actual location of the callee, which might be different
from the address of the originator in the From header

Request lineRequest line

MethodMethod RequestRequest--URIURI SIPSIP--versionversion

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 11

Table 1-2 List of SIP request methods

� Request-URI

The request URI field holds a SIP or SIPS URI. It is used to indicate the user
or service to which the request is addressed.

Method Description

REGISTER This method is used to provides the Registrar with information
specifying the UA’s location and available for incoming SIP requests.
When the user agent’s location changes, another REGISTER
message is sent to update the Registrar’s database.

INVITE This method is used to initiate a communication session between two
UA peers. sent message is sent by a user to initiate a session with
another peer user. INVITE can also be used to initiate a multi party
call.

ACK This method is used for acknowledgement. It indicates that the final
response has been received.

CANCEL This method is used to terminate pending requests. A calling party
can cancel an INVITE message before it receives the final response.

OPTIONS This method is used to query a server on its capabilities. For example,
it can be used to query if a to-be-called party can support a particular
type of media.

BYE This method is used to indicate the termination of a session.

INFO This method (an extension - RFC 2976) is used to communicate
additional information about an active session. For example, it can be
used to inform a user agent when available pre-paid balance is
approaching zero.

REFER This method (an extension - RFC 3515) is used to provide the
recipient with a third party’s contact information. This method can be
used for call transfers.

UPDATE This new method (RFC 3311) is used to change session information
(such as a change in codec) before a final response to a SIP INVITE
message has been received. Typically, UPDATE messages contain
an SDP body that lists the modified session parameters.

SUBSCRIBE
and NOTIFY

These are two new SIP methods (RFC 3265) that are used in
conjunction with each other for SIP based event notification. A user
can subscribe to events such as the Presence information of another
user. Subscribe Method s sent to the SIP Presence Server, so when
the second user becomes available, the Presence Server sends a
NOTIFY.

12 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� SIP-version

The SIP version field identifies the version of SIP protocol that is in use.

1.3.2 SIP responses

The receipt of a request by a user agent or a proxy server triggers a response
which is sent as a SIP response message.

SIP response messages are distinguished by the fact that they have Status-line
in their start-line. The Status-line consist of three fields SIP-version, Status-code
and Reason-phrase which are separated by a single space (SP) character. The
format of a Status-line is illustrated in Figure 1-3 on page 11.

Figure 1-4 Format of a response message start-line

� SIP-version

The SIP version field identifies the version of SIP protocol that is in use.

� Status-code

The status-code is a three digit code which represent the outcome of request
processing. The range of values is between 100 and 699. The first digit
indicates the class of the response (SIP/2.0 allows for 6 possible classes).
Table 1-3 provides a brief overview of the response classes.

Note: The request-line ends with a carriage-return line-feed sequence
(CRLF). No CR or LF are allowed except in the end of line CRLF sequence.
Also, no linear whitewashes is allowed in any of the elements.

Note: ACK requests do not trigger response.

Status lineStatus line

SIPSIP--versionversion StatusStatus--codecode ReasonReason--phrasephrase

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 13

Table 1-3 Response message status-code classes

Code range Description

1xx � Provisional/Informative response
Provisional response indicate that the associated request was
received and being processed. Upon receipt of a provisional
response, the request sender should stop retransmitting the
request.
For example, a proxy server can send a response message with
a Status-code of 100 upon receipt of an INVITE request.
Provisional responses need not be acknowledged with an ACK.

2xx � Success
Success responses with Status-codes in the range from 200 to
299 indicate that the request was received, understood and
successfully processed. For example, a 200 OK response is sent
to a User Agent Client when an INVITE request is successfully
processed.

3xx � Redirection
When further action such as a different location is needed to
complete a request, redirection responses are used to provide the
new location or an alternative service that would satisfy the
request.
Redirection responses are usually sent by redirect servers. When
a redirect server receives a request, it maps the destination
address in the request message to one or more addresses
retrieved from the Registrar location database and returns the
new address list to the originator of the request.
The originator is then supposed to re-send the request to the new
location.

4xx � Client error
Client error response Status-codes are sent when requests
cannot be processed. The request failure could be because of bad
syntax in the request message or simply because the request
cannot be fulfilled by the responding server.

5xx � Server error
Server error response Status-codes are sent in cases where the
request is valid but the server s unable to fulfill the request. Server
internal error (500) and Not implemented (501) are two examples
of Server error response Status-codes.

6xx � Global failure
When a request cannot be fulfilled by any server, the Global
failure response Status-codes are returned. A User Agent Server
can return a global failure response with Status-code 603 to
Decline a request to participate in a session.

14 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� Reason-phrase

This is a short textual description of the Status-code. Where the Status-code
is intended for machine processing, the reason-phrase is a human-readable
message that is rendered to the user by the user agent.

1.3.3 SIP transactions

The set of messages exchanges by SIP components starting with the initial
request and all responses related to the request (including zero or more
provisional and any final responses) are considered a SIP transaction. If the
request is an INVITE, then the ACK is considered part of the transaction only if
the final response is not a 2xx response (that is a negative outcome).

Processing SIP transactions require maintenance of state information.
Consequently, SIP components that associate requests and responses to
transactions are considered stateful. Stateful SIP components extract unique
transaction identifiers from messages and are able to update the state
information for the transaction.

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 15

Figure 1-5 SIP transactions

1.3.4 SIP dialogs

SIP dialogs represent peer-to-peer relationships between two SIP endpoints. It
provides the context for sequencing and routing of messages between SIP user
agents. Dialogs are identified by the following: Call-ID header, and the From Tag
and To Tag parameters. The value of these three fields are the same for
messages that belong to the same dialog. The header field CSeq is used to
sequence messages within a dialog. The value is increased monotonically from
request to request, thereby identifying the transactions within a dialog. In effect, a
dialog is a sequence of transactions. This is illustrated in Figure 1-6 on page 17.

CallerCaller CalleeCallee

INViTEINViTE

100 Trying100 Trying

180 Ringing180 Ringing

200 OK200 OK

ACKACK

BYEBYE

200 OK200 OK

Transaction 1Transaction 1

Transaction 2Transaction 2

16 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 1-6 SIP dialog

1.3.5 A sample SIP call flow

Figure 1-7 on page 19 illustrates the message flow in a simple SIP call between
two user agents. It shows a user Alice establishing a call with another user Bob.
The steps in the following description correspond to the numbering in Figure 1-7
on page 19.

� Step 1 - 2

This is the first request that a UA sends. It is a REGISTER message. It
provides the server with an address at which Alice can be reached for SIP
sessions. In this message Alice is registering herself, though it is possible that
one SIP user can register on behalf of another user. As can be seen in the
REGISTER message (and all other messages from Alice) each message
goes through the Proxy Server.

CallerCaller CalleeCallee

INViTEINViTE

100 Trying100 Trying

180 Ringing180 Ringing

200 OK200 OK

ACKACK

BYEBYE

200 OK200 OK

Transaction 1Transaction 1

Transaction 2Transaction 2

D
ia

lo
g

D
ia

lo
g

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 17

� Step 3 - 4

The response to the REGISTER message is positive, which is indicated by
the 200 (OK) message.

� Step 5 - 6

Alice sends a SIP INVITE to Bob. Let us assume that Alice doesn't know
where Bob has registered, and hence the To address field in the SIP INVITE
header is left blank.

� Step 7 - 8

The Redirect Server responds with a status code 302 (moved temporarily).
This response has field Contact in the header which is filled with an address
where Alice should try as an alternative. Though not shown in the diagram, it
is assumed that Bob has pre-registered before the call flow.

� Step 9 - 10

Alice acknowledges (ACK) the 302 message.

� Step 11

Alice now sends a new SIP INVITE message for Bob.

� Step 12

The role of the proxy server for this message becomes crucial. The proxy
server may map the Request-URI message to a different address, if it knows
that the recipient is at a different address. In our case, Alice knows Bob
address, and hence this won't be necessary. In this case, the Proxy server
just inspects the domain part of the received Request-URI and determines
the next hop in the path from the caller (Alice) to the callee (Bob). After the
initial INVITE request and response, it is possible that subsequent messages
are sent end to end (without traversing a Proxy Server). However, a proxy
server can also ensure that it remains in the signaling path for all subsequent
requests as well.

� Step 13

The Proxy Server sends a Trying message. Any 1XX response is a
provisional response and it indicates that a session has not yet been
established, but a dialog is on. This is an early state of a dialog. There could
also be an optional SIP 180 Ringing Message (Not shown in this call flow).

� Step 14 - 15

Bob answers the call with a 200 OK response, indicating that he is ready to
take a call.

18 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� Step 16 - 17

Alice sends an ACK to confirm that she has received Bob's OK response.
This ends the three way handshake between the two parties. Once Alice
sends the ACK, both parties are ready to exchange media.

� Step 18 - 19

Any party can initiate a BYE request to terminate a session. In this case, Alice
sends a BYE message to terminate the session.

� Step 20 - 21

Bob responds to the completion of the call with an OK response to the BYE.

Figure 1-7 A simple SIP call flow

(1) SIP REGISTER(1) SIP REGISTER

Alice’sAlice’s
SIP UASIP UA

SIP SIP
ProxyProxy

SIP SIP
RegRegistraristrar

Redirect Redirect
ServerServer

Bob’sBob’s
SIP UASIP UA

(2) SIP REGISTER(2) SIP REGISTER

(3) SIP 200 OK(3) SIP 200 OK
(4) SIP 200 OK(4) SIP 200 OK

(5) SIP INVITE(5) SIP INVITE
(6) SIP INVITE(6) SIP INVITE

(7) SIP 302 MOVED TEMPORARILY(7) SIP 302 MOVED TEMPORARILY

(8) SIP 302 MOVED TEMPORARILY(8) SIP 302 MOVED TEMPORARILY

(9) SIP ACK(9) SIP ACK
(10) SIP ACK(10) SIP ACK

(11) SIP INVITE(11) SIP INVITE

(12) SIP INVITE(12) SIP INVITE
(13) SIP 100 TRYING(13) SIP 100 TRYING

(14) SIP 200 OK(14) SIP 200 OK
(15) SIP 200 OK(15) SIP 200 OK

(16) SIP ACK(16) SIP ACK
(17) SIP ACK(17) SIP ACK

(21) SIP 200 OK(21) SIP 200 OK

(19) SIP BYE(19) SIP BYE
(18) SIP BYE(18) SIP BYE

(20) SIP 200 OK(20) SIP 200 OK

RTP Media dataflowRTP Media dataflow

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 19

1.4 SIP Java development

The Java Community Process (JCP) through the Java APIs for Integrated
Networks (JAIN™) initiative, define Application Programming Interfaces (API) for
using Java technologies to provide next generation telecommunications
services. Three of the APIs developed under JCP and JAIN initiative support SIP
programming for call control, messaging, presence and location based services
running on devices ranging from mobile handsets to application servers.

Figure 1-8 JCP SIP programming APIs

1.4.1 JAIN SIP API

The JAIN SIP architecture supports an asynchronous events and messaging
model between Providers and Listeners. Messages are correlated into
transactions and dialogs. The JAIN SIP API defines standardized interfaces to
the stateless and stateful transaction, as well as the stateful dialog models
defined by the SIP protocol. It enables application interoperability across SIP
stack implementations through Java interfaces for:

� SIP stack
� Messaging
� Events

Note: SIP for J2ME™ API defines SIP interface for small devices that support
J2ME platform and Mobile Information Device Profile (MIDP). The focus of this
redbook is the development of server side SIP and IP Multimedia Subsystem
applications, as a result, SIP for J2ME API is not discussed.

API Java platform Target

JAIN SIP

SIP Servlet

SIP for J2ME

J2SE

J2EE

J2ME

Client

Server Web Tier

Device

Note: See Figure 1-9 on page 22 for overview of the JAIN SIP architecture.

20 Developing SIP and IP Multimedia Subsystem (IMS) Applications

The interfaces are realized through Java interfaces SipStack, SipProvider and
SipListener. They encapsulated SIP protocol functionality which can be utilized in
the development of SIP user agents, SIP proxy servers, SIP registrars or
embedded into SIP service containers.

� SipStack

This interface defines the methods and view for representing and managing
proprietary SIP stack. Included in the set of methods are the creation and
deletion methods for SipProvider and ListeningPoint used by applications that
implement SipListener interface.

The JAIN SIP API specification defines a single SipStack object for a given IP
address. However there is a one-to-may relationship between SipStack and a
SipProvider as well as a ListeningPoint.

� SipProvider

The SipProvider interface defines the messaging and transaction view of the
SIP stack. The set of methods provide the following functionality which
applications that implement SipListener rely on:

– Registration - a SipListener must register with the SipProvider in order to
be notified of Events representing either Request, Response or Timeout
messages

– Deregisteration - by deregistering, a SipListener will stop receiving Events
from the SipProvider

– Send stateless Request or Response

– Transaction creation

– Listening Point manipulation

– SipStack object accessor

� SipListener

This interface is implemented by applications that use the JAIN SIP API. It
presents the application with a view of the SIP stack and defines the channel
for the application to receive and process Events from the SipProvider. Three
types of Events are emitted to the application through the SipListener
interface:

– RequestEvent - are request messages such as INVITE that are received
from the network and passed up the SIP stack to the application

– ResponseEvent - are response messages such as 2xx (200 OK) that are
received from the network and passed up the SIP stack to the application

– TimeoutEvent - are emitted by SipProvider and represent need to
retransmit the transaction that timed out

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 21

� ListeningPoint

This interface represents the port that SipProvider uses for sending and
receiving messages

Figure 1-9 JAIN SIP architecture overview

JAIN SIP supports the SIP protocol functionality as described in RFC 3261 “SIP:
Session Initiation Protocol”

JAIN SIP also supports the following SIP extensions:

� RFC 2976

The SIP INFO Method - this extension adds the INFO method to the SIP
protocol

� RFC 3262

Reliability of Provisional Responses in the Session Initiation Protocol - this
extension uses the option tag 100rel and defines the Provisional Response
ACKnowledgement (PRACK) method

Note: More information about the JAIN SIP API specification can be obtained
from the Java Community Process Web site at:

http://jcp.org/en/jsr/detail?id=32

Proprietary
SIP Stack

Proprietary
SIP Stack

SipListener

SipStackSipProvider

SIP
Messages

SIP
Events

SipListener

SIP
Messages

SIP
Events

SipStack SipProvider

Network

Application Application

ListeningPointListeningPoint

22 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://jcp.org/en/jsr/detail?id=32

� RFC 3265

SIP Specific Event Notification - this extension provides the

framework for requesting notification when certain events occur

� RFC 3311

Session Initiation Protocol (SIP) UPDATE Method - this extension allow for
the updating of session parameters prior to the final response

� RFC 3326

The Reason header field for SIP - the addition of this field enable the ability to
know why a SIP request was issued

� RFC 3428

SIP extension for instant messaging - this extension introduces the
MESSAGE method to allow for the transfer of Instant Messages

� RFC 3515

The SIP Refer method - this extension requests that the recipient refer to a
resource provided in the request

1.4.2 SIP Servlet API

SIP Servlet specification was developed through the Java Community Process
(JSR 116). It presents an abstract view of SIP that is based on the Java servlet
API. SIP Servlets are Java based component applications that typically run in
servlet containers on network servers. Where JAIN SIP API provides access to
the full SIP protocol, the SIP servlet and container hide SIP protocol complexities
by providing an environment where services are prevented from violating the
protocol or performing restricted operations.

The SIP container performs many of the same functions in order to simplify the
creation of SIP applications. Servlet container manages the life cycle of a servlet
and support interaction between servlets and SIP clients (user agents) by
exchanging SIP request and response messages. For instance, a servlet
container can perform message queuing, dispatching and state management.

Like HTTP servlets, SIP Servlets extend base javax.servlet.GenericServlet class.
The SipServletRequest and SipServletResponse classes are similar to the
HttpServletRequest and HttpServletResponse classes. All messages come in
through the service method which calls doRequest or doResponse for incoming
requests and responses, respectively. Depending on the request method or
status code the call is dispatched to one of the following methods:

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 23

Table 1-4 SIP servlet request /response methods

The SIP Servlet API includes a set of objects and interfaces that provide
high-level abstraction of many of the SIP concepts. Table 1-5 lists the key items
in the API.

Method Request/Response message

Requests

doInvite SIP INVITE requests

doAck SIP ACK requests

doOptions SIP OPTIONS requests

doBye SIP BYE requests

doCancel SIP CANCEL requests

doRegister SIP REGISTER requests

doSubscribe SIP SUBSCRIBE requests

doNotify SIP NOTIFY requests

doMessage SIP MESSAGE requests

doInfo SIP INFO requests

doPrack SIP PRACK requests

Responses

doProvisionalResponse SIP 1xx informational responses

doSuccessResponse SIP 2xx responses

doRedirectResponse SIP 3xx responses

doErrorResponse SIP 4xx, 5xx, and 6xx responses

Note: Despite being derived from a common base class, there are differences
between SIP Servlets and HTTP Servlets. While HTTP is a synchronous
request/response protocol, SIP is asynchronous, and there is not necessarily
one response, or any responses to every SIP request dispatched to a SIP
Servlet. Also, SIP programming model allow applications to act as a client or
proxy to other servers or proxies.

24 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Table 1-5 SIP servlet objects and interfaces

SIP servlet supports the baseline SIP protocol functionality as described in RFC
3261 “SIP: Session Initiation Protocol”.

SIP servlet also supports the following SIP extensions:

� RFC 3265

Session Initiation Protocol (SIP)-Specific Event Notification - this extension
provides the framework by which SIP nodes can be notified of events that
occur at remote nodes.

� RFC 3428

SIP extension for instant messaging - this extension introduces the
MESSAGE method to allow for the transfer of Instant Messages.

Interface/Object Description

SipServlet The base servlet object, it receives incoming messages
through the service method, which calls doRequest or
doResponse.

ServletConfig Used by the servlet container to pass configuration
information to a servlet during initialization.

ServletContext Used by a servlet to communicate with its container.

SipServletMessage Defines common aspects of SIP requests and responses.

SipServletRequest Provides high-level access to SIP request messages.
Created and passed to the handling servlet when the
container processes incoming requests.

SipServletResponse Provides high-level access to a SIP response message.
Instances of SipServletResponse are passed to servlets
when the container receives incoming SIP responses.

SipFactory Factory interface for a variety of servlet API abstractions.

SipAddress Represents SIP From and To header.

SipSession Represents SIP point-to-point relationships, and maintains
dialog state for UAs.

SipApplicationSession Represents application instances, acts as a store for
application data and provides access to contained protocol
sessions.

Proxy Represents the operation of proxying a SIP request and
provides control over how that proxying is carried out.

 Chapter 1. Introduction to Session Initiation Protocol (SIP) 25

1.5 Examples of SIP application

One application area that showcases the use of SIP is the area of subscription
and notification for events such as Presence. This in turn has applications in
Instant Messaging. The IETF working group - SIP for Instant Messaging (IM) and
Presence Leveraging Extensions (SIMPLE) was set up to address the use of SIP
for messaging and presence. SIP was extended to also support SIP MESSAGE
method for use in instant messaging where each message is independent of any
other message. In addition to applications related to Presence and IM, the
convergence of SIP servlet and HTTP servlet containers is enabling applications
that leverage SIP, such as “click-to-talk”, which integrates communication and
conferencing into existing enterprise applications.

26 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 2. Introduction to IP Multimedia
Subsystem

In this chapter we introduce the concept, architecture and standards that is called
IP Multimedia Subsystem (IMS). We also provide an overview of IMS as the
catalyst for convergence and enabler for service-driven development and
delivery of new applications.

This chapter describes the following:

� IMS overview

� Elements of IMS architecture

� Services in IMS

2

© Copyright IBM Corp. 2007. All rights reserved. 27

2.1 IMS overview

IP Multimedia Subsystem (IMS) is a set of requirements and specifications
defined by 3rd Generation Partnership Project (3GPP) and 3rd Generation
Partnership Project 2 (3GPP2). 3GPP and 3GPP2 were formed through
collaboration agreements that include a number of regional telecommunication
standards bodies. IMS defines a unifying architecture for IP-based services over
both packet- and circuit-switched networks. It enables the convergence of
different wireless and fixed access technologies for the creation, delivery and
consumption of multimedia services. IMS also supports services integration
through standardized reference points (akin to interfaces and protocols) which
not only makes service creation faster and easier but also leverages the services
available through Internet technologies such as Web Services.

2.1.1 IMS vision and history

IMS is at the center of the 3G (third Generation) initiatives driven by 3GPP and
3GPP2 who are participants in International Mobile Telecommunications-2000
(IMT-2000) the global standard for third generation (3G) wireless
communications, defined by a set of interdependent International
Telecommunications Union (ITU) Recommendations.

The 3GPP was formed as a collaboration of many organizations (includes
Association of Radio Industries and Businesses, China Communications.
Standards Association, European Telecommunications Standards Institute,
Alliance for Telecommunications Industry Solutions, Telecommunications
Technology Association of South Korea and Telecommunication Technology
Committee of Japan) in 1998 to develop the technical specifications for a 3G
network evolving from a GSM network. A similar charter, 3GPP2 (includes
Association of Radio Industries and Businesses, Telecommunication Technology
Committee of Japan, China Communications. Standards Association,
Telecommunications Technology Association of South Korea and
Telecommunications Industry Association), was formed to evolve the North
American and Asian networks from traditional CDMA2000 networks into a 3G
platform.

Both 3GPP and 3GPP2 conceptualized their respective IMS (IP Multimedia
Subsystem) architectures to support packet switched communication, in order to
merge the Internet and the cellular worlds. The IMS core network has a common
IP based transport and signalling, which can be accessed by different networks.
IMS common signalling is based on SIP. We presented an overview of SIP in
Chapter 1, “Introduction to Session Initiation Protocol (SIP)” on page 3 as an
end-to-end based session management control protocol. SIP allow applications

28 Developing SIP and IP Multimedia Subsystem (IMS) Applications

to remain agnostic of the access network, which matches the network access
requirements for IMS.

Initial concepts for IMS emerged with the Universal Mobile Telecommunications
System (UMTS) third-generation (3G) specifications in 1998. The first
specification of IMS was published in March of 2003 by 3GPP in UMTS Release
5. UMTS Release 5 provided general description of IMS, SIP and end-to-end
Quality of Service (QoS) as part of an “All IP” network. IMS continues to evolve
with each UMTS release since 2003. New functions and changes to IMS are
introduced through 3GPP approved change requests (CRs) with each release.
3GPP release 6 and 7 added interworking with wireless local area networks
(WLAN) and support for fixed networks, by working together with TISPAN
(Telecoms & Internet converged Services & Protocols for Advanced Networks).

The vision of IMS as the common platform for development and delivery of
diverse multimedia services for a true mobile Internet is based on the set of
requirements set forth in the 3GPP IMS requirements captured in 3GPP TS
22.228.

Available at:

http://www.3gpp.org/ftp/Specs/html-info/22228.htm

The following are the highlights of the key IMS requirements:

� IP multimedia sessions

IP multimedia session requirements are focused on the main service
delivered by IMS, it includes support for a variety of media (such as voice,
video and data) and one or more applications that provide the service
experience within sessions. The IP multimedia session requirements call for
media interoperability and per user application flow control.

� Quality of Service (QoS)

IMS QoS characteristics are negotiated between end points in IMS sessions.
The parameters include the type of media, the codecs and encoding formats,
bandwidth, delay, delay variation and packet loss. The IMS QoS requirements
include negotiations at session establishment and during the session as well
as for individual media components. IMS requirements also allow for
operators to set policy and control QoS for all or individual users.

Note: Telecoms & Internet converged Services & Protocols for Advanced
Networks (TISPAN) is a standardization body that is working through the
European Telecommunications Standards Institute (ETSI) to define the Next
Generation Network architecture. Some aspects of the TISPAN Release 1
architecture is based on IMS.

 Chapter 2. Introduction to IP Multimedia Subsystem 29

http://www.3gpp.org/ftp/Specs/html-info/22228.htm

� Interworking

Interworking requirements support the principle of access independence,
where subscribers can access IMS services regardless of how they obtained
IP connection. Interworking requirements also cover interwork between
circuit-switched and cellular networks.

� Roaming

The IMS roaming requirements are inherited from the second generation
cellular networks where users are able to roam in different networks and
access services provisioned by the user’s home environment or the servicing
network. Roaming requirements include support for automated negotiation
between operators for QoS and service capabilities.

� Service creation

This is one of the key IMS requirements. The service creation requirements
stresses standardization of service capabilities instead of services. By not
requiring standardized services, IMS enable flexibility in service creation
while eliminating the significant delays from interoperability and testing
constraints of standardized services.

2.2 Elements of IMS architecture

The IMS architecture follows a functional approach rather than a physical one.
The functional architecture consist of separate functional components with
standardized interfaces between the components. In other words, it defines the
functions that need to exist and not the physical boxes or nodes where each
function should reside. The decision as to what functions would reside in which
node and how to combine several functions into one node or split functions
across several nodes is implementation dependent.

Figure 2-1 on page 31 is an illustration of the IMS core network reference
architecture, showing the functional components and the standardized interfaces
between the components that are referred to as “reference points”.

30 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 2-1 IP Multimedia Core Network Subsystem reference architecture (Source 3GPP)

2.2.1 Functional components

The IP Multimedia Core Network Subsystem include the different functional
components for a network infrastructure for delivering multimedia services. The
components include databases for maintaining subscriber information, call and
session control components, media and application servers, media/signalling
gateways and user equipments for accessing the network.

� IMS Terminals

They are typically referred to as User Equipment (UE). Examples of UEs are
mobile phones, PDAs (Personal Data Assistant) and computers. Though the
figure shows the UEs accessing the core network through a radio network, in
effect (since IMS supports an access agnostic architecture), they can access
the IMS core through other access topologies, such as WLAN.

Legacy mobile
signallingNetworks

UE

Mb

IMS Subsystem

IP Multimedia Networks
CS NetworkCS Network

CSMb

CS

MbMbMb

MRFP MRFC

Mb

Mc

M

IM –
MGW MGCF Mg

Mr Mw

Mj

Mk Mk

Mi

Gm Ut
P-CSCF

SLF

DxS-CSCF
HSS

Mw

Cx

BGCF

BGC I-CSCF

Mm

Mm

AS

Sh

C, D,
Gc, Gr

Cx

ISC

 Chapter 2. Introduction to IP Multimedia Subsystem 31

� User Databases

The Home Subscriber Server (HSS) contain user data related to subscription
of services. The user data include user profile, location information and
security information. In case a network contains more than one HSS, another
database known as Subscriber Location Functions (SLF) maps the users'
address to the HSS where the data is stored.

� SIP Servers

These are also known as CSCF (Call/Session Control Functions). They
perform session control functions for IMS sessions. CSCFs can be
categorized into three groups, based on the functionality:

– Serving CSCF (S-CSCF)

An S-CSCF is the hub of all signaling functions in an IMS network. In
addition to session management, an S-CSCF also performs the role of a
SIP Registrar within an IMS network. There is a Diameter interface
between S-CSCF and HSS/SLF for downloading authentication data and
user profile. All incoming/outgoing messages to/from a UE traverses the
allocated S-CSCF and it inspects these messages for necessary actions
that need to be taken (for example to authorize a user for a particular
action, based on the user profile). Based on the message, an S-CSCF
performs routing functions. Routing needn't just involve routing messages
to another SIP Server, but could involve Application Servers as well. The
user profile (downloaded by the S-CSCF from the HSS) actually instructs
an S-CSCF whether the SIP signaling message should be routed to one or
more Application Servers before it is routed to the final destination.

– Proxy CSCF (P-CSCF)

P-CSCF performs the role of a SIP Proxy Server for inbound and
outbound messages from an IMS Terminal UE. Once a UE registers itself
in the network, it is assigned a P-CSCF for the duration of the registration.
The tasks performed by a P-CSCF are similar to what we discussed for a
SIP Proxy Server in 1.2, “SIP architectural components” on page 7, with
regards to authentication, security and validation of SIP messages. It also
generates usage/charging data for the UE.

– Interrogating CSCF (I-CSCF)

Strictly speaking an I-CSCF is also a SIP Proxy Server. However, its
location and function is specific in nature. It is located at the edge of an
administrative domain of a network. When a P-CSCF wants to find the
next hop for a SIP message, it obtains the address of the I-CSCF of the
destination network. The I-CSCF uses its Diameter interface with the
HSS/SLF to find the S-CSCF assigned to the UE. It subsequently forwards
the incoming SIP message to the appropriate S-CSCF.

32 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� Application Servers

Application servers essentially host and execute services for users and
perform the function of SIP Application Servers. In other words, depending on
the actual service, application server can operate in of the following modes:

– SIP Proxy mode
– SIP User Agent mode
– SIP Redirect Server mode
– SIP B2BUA (Back to Back User Agent - concatenation of two user agents)

Application servers also interface with the HSS to upload and download user
data.

� Gateways

Several types of gateways are supported in the IMS architecture, for example
the architecture includes gateways for converting signal from packet switched
IMS network to a circuit switched PSTN or vice versa

– Signaling gateways performs lower layer protocol conversion from one
network to another.

– Gateways to convert the media data - Media Gateway (MG) and Media
Gateway Controller Function (MGCF). The MG interfaces the media
planes of two networks. Hence, it converts the media over RTP (in IMS
network) to the PCM (Pulse Code Modulation) based transport in the
PSTN side.

� BGCF (Breakout Gateway Controller Functions)

The BGCF is also a SIP server that performs routing functions when the call
is addressed to a circuit switched network such as PSTN. It locates the
appropriate gateway at the circuit switched destination network for routing the
outgoing call.

� Media Resource Function (MRF)

An MRF performs several media functions for the home SIP network, such as
mix media streams (in a conference bridge), transcoding functions, playing
announcements. An MRF can be further broken into MRF Controller (MRFC)
and MRF Processor (MRFP). The MRFC acts essentially as a SIP UA
interfacing with the S-CSCF) to manage resources of the MRFP, while the
MRFP performs all the media functions stated above.

2.2.2 Reference points

Performing functions in IMS network is realized through procedures which define
the flows between functional components. The interfaces exposed by the
functional components and the control between the components is referred to as
"reference points".

 Chapter 2. Introduction to IP Multimedia Subsystem 33

The following is the description of the reference points for the IP Multimedia Core
Network Subsystem.

� Cx - Supports information transfer between CSCF and HSS

� Dx - The CSCF and SLF interface is used to retrieve the address of the HSS
which holds the subscription date for a given user. Not required in a single
HSS environment

� Gm - Supports communication between the UE and a P-CSCF

� ISC - The interface between the CSCF and application servers for access to
IMS services

� Ma - The interface between an application server and an I-CSCF

� Mb - Used to access IPv6 network services for user data transport

� Mg - Allows the MGCF to forward incoming session signalling (from the
PSTN) to the CSCF for the purpose of interworking with PSTN networks.
Uses SIP for signalling

� Mi - Allows the Serving CSCF to forward the session signalling to the BGCF
for the purpose of interworking with PSTN networks. Uses SIP for signalling

� Mj - Allows the BGCF to forward session signalling to the MGCF for the
purpose of interworking with PSTN networks. Uses SIP for signalling

� Mk - Allows the BGCF to forward session signalling to another BGCF. Uses
SIP for signalling

� Mm - The interface between a CSCF/BGCF/IMS ALG and an IP multimedia
network

� Mr - Supports information transfer between CSCF and MRFC. Uses SIP for
signalling

� Mw - Allows the communication and forwarding of SIP signalling messaging
between CSCFs

� Mx - The interface between a CSCF/BGCF and IBCF

� Sh - Used for communication from the SIP or OSA application server to the
HSS

� Si - Used for communication from the CAMEL application server to the HSS

� Ut - The Ut interface resides between the UE and the SIP Application Server

Note: For the technical specifications of reference points in the 3GPP network
architecture, refer to the specification “3GPP TS 23.002” at:

http://www.3gpp.org/ftp/Specs/html-info/23002.htm

34 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://www.3gpp.org/ftp/Specs/html-info/23002.htm

2.2.3 Protocols

IMS works with a number of protocols. In designing IMS protocols, 3GPP
leveraged the work of other Standards Development Organizations (SDOs) such
as the IETF and ITU-T by reusing existing protocols. The following are some of
the protocols:

� SIP - Session Initiation Protocol

The Session Initiation Protocol (SIP) (RFC3261) defined by IETF is the
chosen as the session control protocol for the IMS.

� DIAMETER

The Diameter protocol provides an Authentication, Authorization, and
Accounting (AAA) framework. The Diameter Base Protocol defined in IETF
RFC 3588 stipulates the minimum requirements for an AAA protocol. IMS
uses Diameter protocol to provide the necessary authentication,
authorization, and, for billable communications, accounting services.

� COPS - Common Open Policy Service

The Common Open Policy Service (COPS) protocol (RFC 2748) is a query
and response protocol for exchanging policy information. This IETF protocol
is used for communication of QoS within the IMS architecture.

� H.248/MEGACO - Media Gateway Control

H.248 is an International Telecommunications Union Telecom
Standardization Sector (ITU-T) standardized Gateway Control Protocol
(GCP). The Internet Engineering Task Force (IETF), endorses this protocol
and refers to it as Megaco (Media Gateway Controller). H.248 is used by IMS
Media Gateway (MG) for media conversion provide end-to-end
communication.

� RTP/RTCP - Real-Time Protocol / Real-Time Control Protocol

RTP is used in IMS as the media protocol for end-to-end delivery of services.
RTCP is used for feedback on the transmission and reception quality of data
carried by RTP. IMS relies on these protocols for transfer of real time media
such video and audio.

� SCTP - Stream Control Transmission Protocol

SCTP is designed to transport PSTN signaling messages over IP networks.
As a reliable transport protocol, SCTP has other applications such as delivery
mechanism for multimedia (SIP) and for wireless.

Note: The list of IMS protocols above are just the key protocols supported by
IMS. A complete protocol stack needed for IMS includes many more
protocols.

 Chapter 2. Introduction to IP Multimedia Subsystem 35

2.2.4 Functional planes

The 3GPP architecture consist of logical planes or layers which correspond to
discrete functions. This is one of the most powerful concepts of the IMS
functional architecture. Each plane consist of IMS functional components that
together provide the functions supported by the plane. The logical functions in
IMS are divided into the following three planes (see Figure 2-2 on page 37 for
illustration):

� Transport plane

The transport plane provides support for the backbone IMS network and for
the different means through which users can gain access to the IMS network.
Included in this plane are IMS components such as routers, media gateways
and switches as well as IMS user equipment devices. These components
translate protocols between the IMS core network and the connecting
network.

The transport plane also shields the upper layers of the IMS architecture from
the network access technologies by providing common access interface to
the components in this planes.

� Control plane

The primary function of the Control plane is to provide switching and session
control in IMS networks. The key components in this plane are the SIP
servers and proxies collectively called Call/Session Control Function (CSCF).
CSCF handles SIP registrations and routing of the SIP signaling messages to
appropriate application servers amongst the other control and signalling
functions that it performs. CSCF also provides policy control and QoS
management.

The other components in this plane include:

– Home Subscriber Server (HSS)

The repository for users service profile. The user information is also used
to provide authentication, authorization and accounting (AAA) functions.

– Media Gateway Control Function (MGCF)

MGCF interworks SIP signaling with the signaling used by the media
gateways. and manages the connections between the PSTN and the IP
streams. It converts SIP messages into either Megaco or ISUP messages.

– Media Server Function Control (MSFC)

The MSFC provides a similar function as the MGCF for media servers

� Service plane

Residing in the service plane are application servers that perform telephony
and non-telephony functions. Application servers interface with Call Session

36 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Control Function in the control plane using SIP, and operate in SIP proxy, SIP
User Agent Server (UAS) or SIP B2BUA (back-to-back user agent) mode. An
AS can be located in the home network or in an external third-party network.

Types of application servers include:

– SIP AS - application servers that interface using SIP

– OSA-SCS (Open Service Access - Service Capability Server) - interfaces
with Open Services Architecture (OSA) application servers using Parlay

– IM-SSF (IP Multimedia Service Switching Function) - CAMEL application
servers, interfaces using CAMEL Application Part (CAP)

Figure 2-2 IMS functional planes

Gm

Control
Plane

Transport
Plane

Mn

Mi

Mj
Mp

MwMw

MwMw

Cx

Dx

ISC ISC ISC

Service
Plane

Sh SiSh

Access
Networks

P-CSCF P-CSCF

I-CSCF S-CSCF

HSS

SLF

BGCF

MGCF

SGW MGW MRFP

MRFC

IM-SSFSIP-ASOSA-SCS

ISUP/MTP PCM

CAPOSA APIs

Mr

 Chapter 2. Introduction to IP Multimedia Subsystem 37

2.3 Services in IMS

One of the promises and objectives of IMS is the ability to develop and deploy
services as quickly as possible. The IMS architecture is designed to enable this
capability by providing an environment that is in contrast to the traditional
vertically integrated silo network environment that supported individual services.
The single converged network environment created by IMS eliminate multiplicity
of services by enabling sharing of services across the different functionality
planes thereby reducing cost and creating better user experience.

Figure 2-3 The IMS integrated services environment

2.3.1 Service architecture

At the center of IMS services architecture are a combination of the servers in the
services plane (discussed in 2.2.4, “Functional planes” on page 36). These
include servers that interface with the Call Session Control Function, other
functions in the control plane and gateways to services, feature specific

Enterprise Service Provider

Dedicated access from dedicated services Ubiquitous access from any client

SIP servers

HSS

Gateways

…. ….

MRFP MGW

Infrastructure

Middleware

Services

A
pplication

A
pplication

A
pplication

Service

Service

Service

A
pplication, M

iddlew
are, Infrastructure

A
pplication, M

iddlew
are, Infrastructure

A
pplication, M

iddlew
are, Infrastructure

IP Multimedia Subsystem

Service, M
iddlew

are, Infrastructure

Service, M
iddlew

are, Infrastructure

Service, M
iddlew

are, Infrastructure

38 Developing SIP and IP Multimedia Subsystem (IMS) Applications

application servers that function as service enablers, and finally third party
application servers that enable creation and composition of converged services.

One of the key IMS requirements is standardization of service capabilities
instead of services. While there are no standardized services, the servers in the
service plane provide standardized services. Examples are the service enablers,
such as group list management service, presence service, location service and
charging service.

Figure 2-4 on page 40 presents an overview of IMS services architecture
showing different types of servers and services. The servers support the full
service life cycle from creation to delivery and execution and also part of the IMS
service creation, deployment and delivery environments.

 Chapter 2. Introduction to IP Multimedia Subsystem 39

Figure 2-4 Overview of IMS services architecture

ServiceService
specificspecific
enablersenablers

ServiceService
IntegrationIntegration

CommonCommon
servicesservices
enablersenablers

ApplicationsApplications

ApplicationApplication
environmentenvironment

IMSIMS
ServicesServices

MessagingMessaging
ServicesServices

Web/WAPWeb/WAP
ServicesServices

StreamingStreaming
ServicesServices

Push To Talk

Conferencing

Rich Voice
Voice Mail

Video Mail

E-mail/Webmail

Instant Messaging

Gaming server

Vending Machine

PIM

Live Video

Video on-demand

JAIN SLEE Web Application Server

SIP enabled Application Server

Policy Manager

Group List Mgr

Presence server

Notification Srv.

Text to speech

Voice record

Download Mgr.

Streaming Svr.

DRM server

Streaming Svr.

Cond. Access

Content Mgr.

Content Mgr.

Service Choreography

B2B gateway (Parlay-X)

OSA gateway

IM-SSF

SCIM

Object Transcoding

Portal Server

Charging gateway

Directory services – Authentication, Authorization, Accounting - AAA

40 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Part 2 Application
development
technologies

Part 2 provides an overview of the IBM service creation and execution
environment. It highlights the features of the different tools that are used for
creating SIP, converged SIP and HTTP, IMS foundation and IMS composite
applications.

Part 2

© Copyright IBM Corp. 2007. All rights reserved. 41

42 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 3. Introduction to IBM SIP and
IMS service creation

This chapter introduces the IBM service creation environment and the different
tools for developing SIP and IMS applications for the IBM WebSphere Platform
for Telecom.

This chapter contains the following:

� Overview

� IBM Unified Service Creation Environment

� Types of SIP and IMS applications

� The SIP and IMS service creation environment

� The service execution environment

3

© Copyright IBM Corp. 2007. All rights reserved. 43

3.1 Overview

The real payoff of the IMS architecture and IP convergence lies in the ability to
rapidly develop and deploy new services. The critical enabler is a robust service
creation and delivery environment. While technology is central to service creation
and delivery, it is only part of the equation. Developing high-quality, robust
services and getting them to market on time require full cycle service
development.

Full cycle service development brings together the business team that is
responsible for setting the business goals and establishing the business
priorities, the software development team that is responsible for developing new
services and the operations team that is responsible for deploying and running
the services.

Full cycle service development includes the following steps:

� Model the service

Captures the service activities and flows, and also simulates alternative
scenarios.

� Analyze requirements

This next step defines the service requirements. By modeling the user
interactions and precisely understanding the different flows, the business and
technology requirements are captured.

� Design and construct

The development team translates the requirements into technology solutions,
using appropriate development paradigm to create high-quality services.

� Test

Quality assurance activities ensure that software artifacts that are produced
functions as designed with acceptable performance.

� Deploy

Coordinated and managed deployment of services to the service execution
environment.

� Monitor

The performance-based feedback cycle that enable comparison of the
projected value to actual results, and for making the necessary adjustments
to maximize business returns.

These steps enable the three different constituencies, business, development
and operations to work together in discovering business and technology assets,

44 Developing SIP and IP Multimedia Subsystem (IMS) Applications

defining and prioritizing the requirements, developing at the speed of business
and deploying in a closed loop. Monitoring the feedback lead to further discovery
and resumption of the cycle. The cycle is illustrated in Figure 3-1.

Figure 3-1 Full service development overview

3.2 IBM Unified Service Creation Environment

Recognizing the strategic importance of a robust service creation and delivery
environment, IBM is developing the “IBM Rational® Unified Service Creation
Environment” (USCE) to support full cycle service development.

USCE is a combination of a comprehensive set of tools, processes that capture
proven best practices, and professional services designed to enable business
driven services development. USCE provides tools that support the different
teams and roles in the creation of services.

The technological underpinnings of USCE is the Eclipse Integrated Development
Environment (IDE), the open source workbench with broad industry support. It

IT Operations
Manager

Application
Support

Senior Executive

Analyst

Architect

Project Manager

Model the
Service

Model the
Service Define

Requirements
Define

Requirements

Analyze
& Design
Analyze

& Design

ImplementImplement

TestTest
DeployDeploy

ManageManage

ProtectProtect

TesterDeployment Manager

Developer

BusinessBusiness

DevelopmentDevelopmentOperationsOperations

Manage
Change

& Assets

Manage
Change

& Assets

Prioritize Plan Manage Measure

Optimize Iterate

 Chapter 3. Introduction to IBM SIP and IMS service creation 45

provides a powerful and yet flexible tool integration infrastructure on which IBM
has created its next-generation software tools platform.

Eclipse platform performs three primary functions in USCE:

� It provides the UI framework for a visually consistent rich client experience as
you move between activities within USCE.

� It supports the sharing of information across different activities through use of
a common set of models expressed in the Eclipse Modeling Framework
(EMF) technology.

� Its integration infrastructure enabled the creation of teaming capabilities
available throughout USCE.

USCE leverages the flexibility of the Eclipse framework to provide user interfaces
that enable users to work in an environment that is tailored to their specific roles
and the development tasks being performed. The use of a common set of
models in the infrastructure makes it easy for the different roles to share artifacts
across different activities.

46 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 3-2 Roles in USCE

USCE include tools that provide support for all roles in the software development
life cycle. The tools map to the following major areas of the software
development life cycle:

� Requirements and analysis

Integrated tools for requirements management, use case development,
business modeling, and data modeling.

� Design and construction

Tools for architecture and design modeling, model-driven development,
component testing, and runtime analysis activities.

ArchitectArchitect DeveloperDeveloper TesterTester

Requirements and analysisRequirements and analysis

Design and constructionDesign and construction

Software qualitySoftware quality

EclipseEclipse
•• RoleRole--based UIsbased UIs
•• Common models for integration across the life cycleCommon models for integration across the life cycle
•• Artifact sharing via interface to Team Unifying PlatformArtifact sharing via interface to Team Unifying PlatformC

us
to

m
er

C
us

to
m

er
Ex

te
ns

io
ns

Ex
te

ns
io

ns

Third
Third -- party

party
ISV tools
ISV tools

AnalystAnalyst

ProjectProject
ManagerManager

Software configuration managementSoftware configuration management

Process and project managementProcess and project management

ExecutiveExecutive

Portfolio managementPortfolio management

 Chapter 3. Introduction to IBM SIP and IMS service creation 47

� Software quality

Tools that address the three dimensions of software quality: functionality,
reliability, and performance.

� Software configuration management

Solutions for simplifying and managing change including version control,
software asset management, and defect and change tracking.

� Process and portfolio management

Integrated solutions that help teams manage change and requirements,
implement a proven development process, and assess and report progress.

Figure 3-3 Overview of USCE portfolio

Design & Design &
constructionconstruction

Software Software
qualityquality

Deploy & Deploy &
managemanage

EclipseEclipse

Requirements Requirements
& analysis& analysis

ProjectProject
ManagegementManagegement

Rational Unified Process, Rational Rational Unified Process, Rational ClearCaseClearCase, Rational , Rational
ClearQuestClearQuest, Rational , Rational SoDASoDA, Rational , Rational ProjectConsoleProjectConsole

WebSphere
Business
Modeler &

Monitor

Rational
RequisitePro

Rational
Software
Modeler

Rational
Software

Architect &
application
developer

Rational
Functional
& Manual

Tester

Rational
Performance

Tester

PortfolioPortfolio
ManagegementManagegement Rational Portfolio ManagerRational Portfolio Manager

Tivoli
Composite
Application
Manager

Tivoli
Provisioning

Manager

48 Developing SIP and IP Multimedia Subsystem (IMS) Applications

3.3 Types of SIP and IMS applications

Using toolkits in the USCE, you can create a number of distinct types of SIP and
IMS applications. The types of applications include the following:

� SIP servlet applications that run in J2EE containers.

� Converged SIP applications that include SIP and HTTP servlets running in
shared sessions in J2EE containers.

� IMS foundation applications where SIP servlet applications access IMS
components using IMS Service Control (ISC), Diameter and XML
Configuration Access Protocol (XCAP) interfaces.

� IMS composite applications where Business Process Execution Language
(BPEL) processes implement the service logic and orchestrate foundation
services

 Chapter 3. Introduction to IBM SIP and IMS service creation 49

.

Figure 3-4 Application types and required toolkit

Web applicationWeb application
•• HTTP HTTP servletservlet
•• Service logic runs in J2EE containersService logic runs in J2EE containers

SIP applicationSIP application
•• SIP SIP servletservlet
•• Service logic runs in J2EE containersService logic runs in J2EE containers

Converged SIP applicationConverged SIP application
•• SIP SIP servletservlet
•• HTTP HTTP servletservlet
•• Shared sessionShared session
•• Service logic runs in J2EE containersService logic runs in J2EE containers

IMS foundation applicationIMS foundation application
•• SIP SIP servletservlet
•• Access to IMS components over ISC, Access to IMS components over ISC,
Diameter and XCAP interfacesDiameter and XCAP interfaces
•• Service logic runs in J2EE containersService logic runs in J2EE containers

IMS composite applicationIMS composite application
•• SIP SIP servletservlet
•• BPEL process implements the service BPEL process implements the service
logiclogic
•• Orchestrates foundation servicesOrchestrates foundation services

Application typeApplication type ToolkitToolkit SIPSIP IMSIMS WIDWID

J2EE containerJ2EE container

HTTP HTTP
Servlet

J2EE containerJ2EE container

SIP SIP
Servlet

J2EE containerJ2EE container

HTTP
Servlet

SIP
Servlet

SIP HTTP

J2EE containerJ2EE container

SIP
Servlet

SIP

Diameter

Web Services

XCAP

BPEL
process

SIP
Servlet

SIP

Web
Services

Web
Services

Diameter

XCAP

Note: USCE includes a number of toolkits for developing SIP and IMS
applications. They include:

� IBM WebSphere Application Server Toolkit
� IBM WebSphere IMS Enablement Toolkit
� IBM Telecom Web Services Toolkit

These toolkits and their use in creating SIP and IMS applications is the focus
of this redbook. In this chapter we introduce the toolkits and in the subsequent
chapters we provide a more complete overview of each toolkit and use the
toolkits to create sample SIP and IMS applications.

50 Developing SIP and IP Multimedia Subsystem (IMS) Applications

3.4 The SIP and IMS service creation environment

The IBM SIP and IMS service creation environment consist of a set of toolkits for
developing SIP, converged and composite IMS applications, as well as servers
that provide the runtime environment where these services run. Figure 3-6 on
page 52 captures the key components of the SIP and IMS service creation
environment.

Figure 3-5 Service creation and execution in the IMS architecture

The key components of the IBM service creation environment include the
toolkits:

� IBM WebSphere Application Server Toolkit which is used for creating SIP and
SIP/HTTP converged applications

� IBM WebSphere IMS Enablement Toolkit which is used for creating IMS
foundation applications.

� IBM Telecom Web Services Toolkit which is used for creating composite IMS
applications.

The runtime environments are:

� WebSphere Application Server V6.1

Provides runtime for SIP through its support for converged container for SIP
and HTTP servlets.

B
ui

ld
D

es
ig

n
Te

st

M
anagem

ent plane

Transport plane

Control plane

Service plane

Radio
Access
Network

Device

Service creation
environment

Service execution
environment

Focus of this
redbook

 Chapter 3. Introduction to IBM SIP and IMS service creation 51

� WebSphere Process Server

Is a high-performance business engine that executes business processes
securely, consistently, and with transactional integrity.

� WebSphere Enterprise Service Bus

Provides Web Services connectivity, Java Message Service (JMS)
messaging and service oriented integration.

Figure 3-6 Overview of IBM service creation and execution environments

In the rest of this section, we introduce the toolkits and the runtime environment.
An overview of each of the toolkits as well as the runtime environment is
presented in the next five chapters.

Runtime environmentRuntime environmentService creation environmentService creation environment

Eclipse: Base & WTPEclipse: Base & WTP
Basic framework, Web tools, Basic framework, Web tools,
modelsmodels, wizards, wizards

SIP toolkitSIP toolkit

IMS enablement toolkitIMS enablement toolkit

Rational Software Rational Software
Development PlatformDevelopment Platform
Built on Eclipse platformBuilt on Eclipse platform

Telecom Web Services Telecom Web Services
Server toolkit Server toolkit

Sh

TCP Stack
UDP Stack

SIP Stack – JSR32

JSR116 Interface

ISC Interface

Diameter Base
HTTP Stack

Presence Regstry Proxy

Parlay
X

VXML
CCXML

Browsers

List
Mgr

PX WSPX WS

Cx Ro Rf

Web Services Interface

New SIP Servlet

WebSphereWebSphere Application ServerApplication Server V6.1V6.1

WebSphereWebSphere Integration Integration
DeveloperDeveloper

New IMS processesNew IMS processes

WebSphereWebSphere Process ServerProcess Server
DeployDeploy

DeployDeploy

TWSS parlay X mediation flowsTWSS parlay X mediation flows

WebSphereWebSphere Enterprise Service BusEnterprise Service Bus

New mediation flowsNew mediation flows

DeployDeploy

52 Developing SIP and IP Multimedia Subsystem (IMS) Applications

3.4.1 IBM WebSphere Application Server Toolkit

The IBM WebSphere Application Server Toolkit (AST) is available with
WebSphere Application Server (WAS) Version 6.1. You can use it to create, test
and deploy applications that run within the WebSphere Application Server
Version 6.1.

Note: We used a number of third party tools which are not part of the IBM
service creation environment for developing and testing SIP and IMS sample
applications in this redbook. The tools include:

� SIPp

SIPp is a free Open Source test tool / traffic generator for the SIP protocol
available under GNU General Public License. The current version is
1.1rc5, but the one we have used when writing the redbook is 1.1rc4. It
includes a few basic SipStone user agent scenarios (UAC and UAS). It can
also reads custom XML scenario files containing SIP messages thus
describing from very simple to complex call flows.

http://sipp.sourceforge.net/

� Ethereal

Ethereal is a network packet analyzer software available for both
Windows® and Linux environments. It is Open Source software released
under the GNU General Public License. It captures capture network
packets flowing in and out of a selected network interface and displays
them in real time with protocol dependent information. It provides filtering
capabilities and supports SIP protocol.

It can be found at:

http://www.ethereal.com

� SIPxPhone

SIPXphone is a fully functional SIP soft phone that runs on Microsoft®
Windows and Linux. The phone client supports multiple simultaneous calls,
hold, mute, client-mixed conferencing, consultative transfer, multiple line
appearances, authentication, and an extensible Java-based application
environment.

sipXphone is developed under open source and hosted as part of the sipX
line of projects available from SIPfoundry. It is licensed under LGPL. For
more information about open source licensing or SIPfoundry, see:

http://www.opensource.org or http://www.sipfoundry.org

 Chapter 3. Introduction to IBM SIP and IMS service creation 53

http://sipp.sourceforge.net/
http://www.ethereal.com
http://www.opensource.org
http://www.sipfoundry.org

The AST is built using the Eclipse Web Tools Platform V1.0.2. All tools in the
AST are integrated into the Eclipse workbench. The tools include wizards which
are used to generate the set of files for Java, Java 2 Platform, Enterprise Edition
(J2EE), Enterprise JavaBean (EJB™), SIP and Portlet projects, and editors
which provide code assist and validation to improve productivity. AST is fully
integration with WebSphere Application Server, so applications developed with
AST can be deployed on WebSphere Application Server V6.1 for testing and
execution.

Figure 3-7 SIP application development and execution environment

Using AST, you are able to do the following:

� Develop applications ranging from Web to J2EE applications

WebSphere AST supports a variety of technologies such as J2EE 1.4,
Enterprise JavaBeans™ 2.1, Web Services, XML, and portlets.

� Program in different markup and scripting languages

You can edit various markup languages such as HTML and XML, as well as
JavaScript™.

� Manage source code

The Eclipse workbench supports use of source code control system to
manage, share and synchronize resources. It can be configured to work with
CVS, Clearcase, or other source control systems.

� Deploy applications for unit test

Runtime environmentRuntime environmentService creation environmentService creation environment

Sh

TCP Stack
UDP Stack

SIP Stack – JSR32

JSR116 Interface

ISC Interface

Diameter Base
HTTP Stack

Presence Regstry Proxy

Parlay
X

VXML
CCXML

Browsers

List
Mgr

PX WSPX WS

Cx Ro Rf

Web Services Interface

New SIP Servlet

WebSphereWebSphere Application Server V6.1Application Server V6.1

DeployDeploy

Eclipse: Base & WTPEclipse: Base & WTP
Framework, Web tools, Framework, Web tools, modelsmodels, ,
wizardswizards

WebSphereWebSphere: AST: AST
WebSphereWebSphere Application Server Application Server
app creation, assembly, app creation, assembly,
deployment & unit testdeployment & unit test

SIP SIP
toolkittoolkit New SIP service

54 Developing SIP and IP Multimedia Subsystem (IMS) Applications

You can build, package, and deploy applications for testing and debugging.

� Perform functional test

You can deploy applications for function testing in a test server environment.

� Deploy for production

Finally you can deploy the completed application onto a production server.

A more detailed overview of the IBM WebSphere Application Server Toolkit is
presented in Chapter 4, “IBM WebSphere Application Server Toolkit” on page 63.

3.4.2 IBM IMS Enablement Toolkit

IMS EnablementToolkit adds additional features to the IBM WebSphere
Application Server Toolkit to enable access to core IMS enablers such as
presence and group list from the SIP servlet. The IMS enablement plug-in
enhances the Java 2 Platform, Enterprise Edition (J2EE) development
perspective to enable the creation of foundation level IMS applications.

The enhanced J2EE perspective includes:

� Service creation with new SIP project and servlets wizard to accelerate
development of JSR 116 SIP Servlets.

� Support for the SIP archive (SAR) archive format and a wizard for editing SIP
deployment descriptors, just like other J2EE components.

� Compilation with automatic inclusion of SIP Application Server (SIP A/S)
libraries to decrease risk of errors.

� Packaging of J2EE and SIP components to accelerate deployment to runtime
servers.

� SIP sample services gallery

� IMS specific help plug-in.

Foundation level applications make use of enablers such as Short Message
Service (SMS) and location services as well as IMS enablers (for example
presence) to provide encapsulated end-user services. They provide simple
interfaces which enable reuse, making it possible to compose foundation level
services to build more feature rich IMS composite applications.

 Chapter 3. Introduction to IBM SIP and IMS service creation 55

The IBM WebSphere Platform for Telecom contains the following IMS enablers
and access gateways:

� IBM WebSphere Presence Server

IMS-compliant server that collects, manages, and distributes real-time
information regarding the access, availability, and willingness to communicate
of users.

� IBM WebSphere Group List Server component

The group list server enable users and administrators to create and manage
network-based groups. It maintains access lists, permissions, and other
service-specific properties associated with those groups and group members
across applications.

� IBM WebSphere IMS Connector

WebSphere IMS Connector adds IMS-specific interfaces to the
industry-leading WebSphere Application Server V6.1 platform to deliver for a
fully IMS standards-compliant SIP application server.

Figure 3-8 The service creation and execution environment for IMS foundation services

In Chapter 5, “IBM IMS Enablement Toolkit” on page 89 we present more
detailed overview of the IMS Enablement Toolkit.

Runtime environmentRuntime environmentService creation environmentService creation environment

Sh

TCP Stack
UDP Stack

SIP Stack – JSR32

JSR116 Interface

ISC Interface

Diameter Base
HTTP Stack

Presence Regstry Proxy

Parlay
X

VXML
CCXML

Browsers

List
Mgr

PX WSPX WS

Cx Ro Rf

Web Services Interface

New SIP Servlet

WebSphereWebSphere Application Server V6.1Application Server V6.1

DeployDeploy

Eclipse: Base & WTPEclipse: Base & WTP
Framework, Web tools, Framework, Web tools, modelsmodels, ,
wizardswizards

WebSphereWebSphere: AST: AST
WebSphereWebSphere Application Server app Application Server app
creation, assembly, deployment & creation, assembly, deployment &
unit testunit test

IMS IMS
toolkittoolkit New IMS service

56 Developing SIP and IP Multimedia Subsystem (IMS) Applications

3.4.3 IBM Telecom Web Services Toolkit

IMS composite applications consist of foundation level applications and service
enablers that are composed to create yet higher level services using the IBM
Telecom Web Services Toolkit and the IBM WebSphere Integration Developer.

A key requirement for foundation services as well as service enablers is the
adherence to the principles of service-oriented architecture (SOA). In other
words, foundation services and service enablers, act as SOA service
implementations by exposing well defined interfaces (the SOA service) and
avoiding any implicit dependencies on other components. The services and
enablers are choreographed using BPEL resulting in new composite services.
Note that the new composite services are themselves SOA services and hence
can be used to create yet higher level services.

To develop IMS composite application you need to install the IBM Telecom Web
Services Toolkit which is a BPEL process component to the base IMS service
creation environment. You also need the IBM WebSphere Integration Developer
which is an integrated and powerful development platform for BPEL process
development.

 Chapter 3. Introduction to IBM SIP and IMS service creation 57

Figure 3-9 IMS development and execution environment for composite services

3.4.4 IMS Enablement Toolkit

The IMS Enablement Toolkit 6.1 functions in Eclipse 3.1 and Web Tools Platform
(WTP) 1.0.2. It enables the development of IMS applications using
Standards-compliant IMS extensions to IETF SIP through the ISC (IMS Service
Control) interface.

The IMS Enablement Toolkit 6.1 includes the following components:

� Diameter Resources

– Rf Interface libraries - Rf accounting Web Services provides an IMS
Application Server application with a Diameter messaging interface to
enable the application to send offline accounting messages to accounting
or billing servers

Runtime environmentRuntime environmentService creation environmentService creation environment

Eclipse: Base & WTPEclipse: Base & WTP
Basic framework, Web tools, Basic framework, Web tools,
modelsmodels, wizards, wizards

SIP toolkitSIP toolkit

IMS enablement toolkitIMS enablement toolkit

Rational Software Rational Software
Development PlatformDevelopment Platform
Built on Eclipse platformBuilt on Eclipse platform

Telecom Web Services Telecom Web Services
Server toolkit Server toolkit

Sh

TCP Stack
UDP Stack

SIP Stack – JSR32

JSR116 Interface

ISC Interface

Diameter Base
HTTP Stack

Presence Regstry Proxy

Parlay
X

VXML
CCXML

Browsers

List
Mgr

PX WSPX WS

Cx Ro Rf

Web Services Interface

New SIP Servlet

WebSphereWebSphere Application Server V6.1Application Server V6.1

WebSphereWebSphere Integration Integration
DeveloperDeveloper

New IMS processesNew IMS processes

WebSphereWebSphere Process ServerProcess Server

DeployDeploy

DeployDeploy

WSDLWSDL
importimport

WSDLWSDL
importimport

58 Developing SIP and IP Multimedia Subsystem (IMS) Applications

– Sh interface libraries - Sh subscriber profile Web Services are used to
retrieve and update user profile data from the Home Subscriber Server
(HSS)

– Corresponding Web Services Description Languages (WSDLs) of Rf and Sh
services to enable interaction between IMS application server and
charging and subscriber profile servers through Web Services. It also
includes a notification WSDL to implement to receive notifications that a
specified subscriber has been changed

– Rf and Sh test clients

� Presence Resources

– Authorization APIs library - allow for the development of customized
permission policies. With these APIs it is possible to develop pluggable
applications that provide authorization information and allow or disallow
subscription to a presentity.

� Parlay X 2.1 Resources

– WSDLs for Parlay X 2.1 Web Services (they include Third Party Call, Call
Notification, SMS, Payment and Terminal Status)

� An example of ISC SIP project

This sample demonstrates the use of SIP Servlet API and ISC to implement a
Back-To-Back User Agent (B2BUA) service. It shows the interaction between
User Agents, SIP servers and Call Session Control Function (CSCF).

IBM WebSphere Integration Developer
The IBM WebSphere Integration Developer is a role-based development
environment based on the Eclipse 3.0 platform. It can be used in conjunction with
other Rational and WebSphere tools. Each user has a unique tools perspective
based on their role (for example, J2EE developer, business analyst, or
integration developer).

The IBM WebSphere Integration Developer supports both a top-down design
approach to building integrated applications, where the implementation for one or
more components does not already exist and is added later; as well as a
bottom-up approach, where the components are already implemented and the
developer assembles the components, creating a logical flow by connecting the
components using a visual editor. It also provides a debugging and test
environment which includes setting of points for real time monitoring and fine
tuning for optimal performance.

Applications created using the WebSphere Integration Developer conform to a
number of industry-wide standards. These include:

� J2EE Connector Architecture which is used for connectivity

 Chapter 3. Introduction to IBM SIP and IMS service creation 59

� Java Message Service (JMS) is used for asynchronous messaging, and in
cases where guaranteed delivery of data is required

� Simple Object Access Protocol (SOAP) is used for integrating Web Services

� Web Services Description Language (WSDL) for describing services

� Business Process Execution Language (BPEL) to define business processes

The standards-based interfaces and components provide an open and pluggable
architecture which supports integration of components developed on other
platforms such as .NET.

In addition to the business process and integration, WebSphere Integration
Developer also provides support for development of mediation services.

Mediation services intercept and modify messages that are passed between
existing services (providers) and clients (requesters) that want to use those
services. Mediation modules can be deployed on the WebSphere Enterprise
Service Bus or the WebSphere Process Server.

For example, mediation flows can be used to find services with specific
characteristics that a requester is seeking and to resolve interface differences
between requesters and providers. For complex interactions, mediation
primitives can be linked sequentially. Typical mediations include:

� Transforming a message from the sending service to a format that the
receiving service can process

� Conditionally routing a message to one or more target services based on the
contents of the message

� Augmenting a message by adding data from a data source

Chapter 7, “IBM Telecom Web Services Server Toolkit” on page 145 and
Chapter 6, “IBM WebSphere Integration Developer” on page 119 provide
overviews of the IBM Telecom Web Services Toolkit and the IBM WebSphere
Integration Developer, respectively.

3.5 The service execution environment

The service execution environment provides the platform with standardized
interfaces for executing applications and performing authorized operations.

Attention: Mediation services in the context of the Enterprise Service Bus
architecture is different and should not be confused with mediation services
typically used to collect and transform charging records in BSS/OSS context.

60 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 3-10 is an illustration of the IBM service execution environment which
shows the modular service enablers the IBM WebSphere IP Multimedia
Subsystem (IMS) Connector, IBM WebSphere Presence Server and IBM
WebSphere Telecom Web Services Server.

Figure 3-10 IBM IMS service execution environment

The environment is delivered on the WebSphere software platform, the proven,
secure and flexible environment that delivers high volume and mission-critical
infrastructure. The core execution environment is provided by WebSphere
Application Server, which in this latest 6.1 release includes a SIP stack. The IBM
service execution environment may also include the WebSphere Process Server
which contains the WebSphere Enterprise Service Bus. The Process Server
provides a high-performance business process engine that executes composite
services securely, consistently, and with transactional integrity. A detailed
overview of the service execution environment is described in Chapter 8,
“Introduction to the IBM service execution environment” on page 159.

Group List
Server

WebSphereWebSphere Application Server V6.1Application Server V6.1

Service execution platform (converged SIP/HTTP)Service execution platform (converged SIP/HTTP)

IMS applications and services IMS applications and services

IMS Connector
(Diameter, ISC,

…)

Presence
Server

Telecom Web
Services Server

IBM service enablers Partner provided

 Chapter 3. Introduction to IBM SIP and IMS service creation 61

62 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 4. IBM WebSphere Application
Server Toolkit

This chapter provides an introductory overview of the WebSphere Application
Server Toolkit (AST) an Eclipse based integrated application development
environment. It introduces the use of AST for developing, packaging and
deploying SIP applications that run in the WebSphere Application Server V6.1.

This chapter contains the following:

� AST overview

� Developing SIP servlet application

� SIP servlet deployment

� Sample SIP services

4

© Copyright IBM Corp. 2007. All rights reserved. 63

4.1 AST overview

The WebSphere Application Server Toolkit (AST) is an application development
environment for creating applications targeting the WebSphere Application
Server. Using AST, you are able to create, test and deploy applications to the
WebSphere Application Server. The tools in AST are integrated into a workbench
that is based on Eclipse technology and the Web Tools Platform.

AST is just one of the tools in the IBM hierarchy of integrated application
development environments. Figure 4-1 shows the illustration of the hierarchy.

Figure 4-1 IBM tools portfolio hierarchy

With the release of WebSphere Application Server V6.1, AST 6.1 has
transitioned from its focus as an application deployment tool to an application
development tool. In addition to expanded functional scope of WebSphere tools,
AST now include the following new features:

� Inclusion of Eclipse Web Tools Platform V1.0.2

� Jython development tools

� Tools support for developing JSR 168 portlets

� Improved server tools for publishing and testing applications targeted for
WebSphere Application Server V6.1

Eclipse: Base & WTPEclipse: Base & WTP
Framework, Web tools, Models, Framework, Web tools, Models,
wizardswizards

WebSphereWebSphere: AST: AST
WebSphereWebSphere Application Server app Application Server app
creation, assembly, deployment & creation, assembly, deployment &
unit test supportunit test support

Rational: Rational Application Developer, Rational Web Rational: Rational Application Developer, Rational Web
Developer, Rational Software ArchitectDeveloper, Rational Software Architect
UML modeling & visualization, Graphical application UML modeling & visualization, Graphical application
construction, Component test automation & management, construction, Component test automation & management,
Code analysis, complexity & correctness, Application trace & Code analysis, complexity & correctness, Application trace &
profilingprofiling

Rational Software Architect, Rational Software Architect, WebSphereWebSphere Integration Integration
Developer, Developer, WebSphereWebSphere Developer for Z, Developer for Z, ……

64 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� And of interest for the topic of this book, tools support for developing JSR 116
SIP servlet applications

The workbench incudes J2EE perspective which now allow for the creation of
Web services from JavaBeans, Enterprise JavaBeans and WSDL files.
Previously, you could only assemble and deploy Enterprise JavaBeans, as well
as modify their deployment descriptor. Now you can create, modify and deploy
EJBs, do bottom-up mapping for container managed persistence (CMP) and
support back-end database for generating EJB deployment code.

Figure 4-2 The AST workbench

AST V6.1 supports a number of SIP application development tools that are
available through the J2EE perspective. They include the following:

� SIP and converged SIP/HTTP projects

AST introduced two new types of projects for creating SIP only and
converged SIP/HTTP applications.

� SIP servlet development (JSR 116)

In addition to HTTP servlet development, AST V6.1 includes the capability to
develop SIP servlet based on the JSR 116 specification.

 Chapter 4. IBM WebSphere Application Server Toolkit 65

� SIP deployment descriptor editor

The editor is used for configuring and packaging SIP applications. SIP
applications are packaged in a new construct called a SIP Application
Resource (SAR). It can encapsulate SIP Servlets and traditional HttpServlets
and both are fully supported by AST V6.1.

Using the SIP deployment descriptor editor you are able to configure and
specify parameters for different servlets in your application. For example, you
can use the deployment descriptor editor to add servlet mappings so SIP
messages are routed to appropriate servlets for processing.

� Import/export of SAR packages

Unlike other Web and J2EE applications, SIP applications cannot be directly
deployed on the application server from inside AST. You must first use the
import/export tool to export the SIP application as either a standalone SAR or
as part of a Enterprise ARchive (EAR) package. Only then can you install the
package to the application server using the administrative console.

4.2 Developing SIP servlet application

AST in WebSphere Application Server 6.1 adds the capability to develop JSR
116 Servlets, also called Siplets. You can develop and test SIP applications using
the same methodology that is used to test and deploy J2EE applications. A
Session Initiation Protocol (SIP) application is a group of servlets, resources and
source files that can be managed as a single unit. You can develop SIP only or
converged SIP and HTTP servlets using the AST

Note: AST V6.1 main and enhanced features

� Server tools for WebSphere Application Server, such as debugging and
unit testing support.

� Support for WebSphere Application Server-specific extensions, such as
SIP and Jython tools.

� Graphical editors for WebSphere Application Server property files and
deployment descriptors.

Information center for AST V6.1 is can be accessed at the following URL:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topi
c=/com.ibm.welcome.ast.doc/topics/astoverview.html

66 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.welcome.ast.doc/topics/astoverview.html

4.2.1 SIP only applications

To develop a new SIP application, you start by creating a new SIP project. And
for that, you use the New SIP Project wizard. The wizard creates a SIP project
similar in layout and content to a Dynamic Web Project. It includes additional
categories on the project creation menu for SIP Project, Converged Project
and SIP Servlet.

Figure 4-3 Creating a SIP project

Next, you create SIP Servlets which provide the application functions. You create
a SIP servlet by defining the servlet class name, location, package and super
class. This is identical to the HTTP servlet wizard's entries except that the
superclass is pre-filled with the SIP Servlet API superclass,
javax.servlet.sip.SipServlet.

 Chapter 4. IBM WebSphere Application Server Toolkit 67

Figure 4-4 Creating A SIP Servlet

The deployment descriptor information is similar to that in the Servlet wizard, and
you use it to enter the SIP servlet deployment descriptor information in the
unique SIP mapping section.

The last page in the wizard is used to defining interfaces and methods. Stubs are
automatically created in the servlet class, you implement the servlet by
developing the code for the stubs.

Note: More information about the definition of the deployment descriptor is
provided in 4.2.3, “SIP servlet deployment” on page 71.

68 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 4-5 Choosing methods to implement in a SIP servlet

4.2.2 Converged SIP/HTTP applications

AST also supports creation of converged Session Initiation Protocol (SIP) and
Hypertext Transfer Protocol (HTTP) applications. The converged project is a
Dynamic Web project with SIP content and contains SIP deployment descriptor
file, sip.xml, as well as Web deployment descriptor file, web.xml, located in the
WebContent\WEB-INF folder.

Note: A sample application showing how to develop SIP servlet applications
using AST is provided in Part 3, “SIP applications” on page 203.

Note: The current version of IBM SIP container supports servlet Version 2.3.
This implies that when creating a Converged Project the Dynamic Web
Module Version 2.3 will be automatically chosen.

 Chapter 4. IBM WebSphere Application Server Toolkit 69

Figure 4-6 Dynamic Web Module version in a Converged Project

If you are working with an existing Dynamic Web Project with Dynamic Web
Module 2.3 that doesn’t have SIP content in it, you can add SIP Content to it by
selecting the folder, open the property editor for the project, and then select
Project Facets. Click Add/Remove Project Facets, this will show a window as
in Figure 4-7 on page 71 where you can select SIP Module 1.0.

Note: If you start a Web Application with HTTP Servlets 2.4, adding SIP
content will be disabled.

70 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 4-7 Adding a SIP Module to a Converged Project

If the existing Web Project already has HTTP Servlets, as per the SIP
specification, the distributable, display-name, icons tag from web.xml will be
copied to the newly created sip.xml. This avoids having to manually check the
consistency between sip.xml and web.xml. Once the SIP deployment descriptor
is created, it is possible to add SIP Servlets from the deployment descriptor
editor.

4.2.3 SIP servlet deployment

The deployable SIP application is a SAR file created by the export wizard. It is a
basic Java archive with a ".sar" file extension. In addition to project resources,
the SAR file includes the SIP deployment descriptor file.

The SAR export and import wizards are extensions of the Web archive (WAR)
export and import wizards. The SAR export wizard allow you to specify the SIP
project to export, and whether to include source files or not.

In the case of Converged SIP/HTTP application, the SAR export operation has
additional validations during export process to ensure compliance with SIP

 Chapter 4. IBM WebSphere Application Server Toolkit 71

specification. In particular, the initialization parameters for SIP and HTTP are
merged in the ServletContext. The converged application may be exported to a
WAR file, however the above check will not be performed.

The import wizard is essentially the reverse of the export wizard. With the import
wizard, you are able to import a previously exported SAR file into your
workspace. If the SAR file is a SIP only application, then a corresponding SIP
Project is created. If on the otherhand the SAR file is a converged HTTP/SIP
application, a project with HTTP and SIP content will be created.

Deployment descriptor
The SIP Deployment Descriptor (DD) is used to describe how a SIP application
should be deployed. XML is used for the syntax of the Deployment Descriptor
file. The information is stored in .xml file, for a SIP application the file is sip.xml
and for HTTP applications the file is web.xml. The deployment descriptor
information is used to build the SAR file when you export the SIP application.

AST provides a SIP Deployment Descriptor editor for creating and maintaining
the sip.xml descriptor file, and the Web Deployment Descriptor editor for
web.xml

Web deployment descriptor editor
The Web deployment descriptor editor lets you specify deployment information
for modules created in the Web development environment. The information
appears in the web.xml file. You should use the Web deployment descriptor to set
deployment descriptor attributes and not to manipulate Web resource content.

The web.xml file for a Web project provides information necessary for deploying
a Web application module. It is used in building a WAR file from a project. The
web.xml file is automatically created in WEB-INF under the project's Web content
folder.

The Web deployment descriptor editor is dynamic and includes many tabbed
pages (views) that represent various properties and settings in the deployment
descriptor. For example, you can click the Servlets tab to display the servlets
page, where you can add or remove servlets and JSPs that are used in the Web
application.

72 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 4-8 Web deployment descriptor editor

SIP deployment descriptor editor
The SIP deployment descriptor editor includes multiple tabbed pages (Overview,
Servlet, Security, Variables, References and the Source page), each of which
you can just view to get a summary of its contents or you can add, remove, or
change the contents.

� Overview page

The Overview page extends the Web Deployment Descriptor Overview Page.
Some pages and sections that are not relevant to SIP have been removed
while additional sections relevant to SIP are added for example the Login
section.

 Chapter 4. IBM WebSphere Application Server Toolkit 73

Figure 4-9 SIP Servlet Descriptor Editor Overview page

74 Developing SIP and IP Multimedia Subsystem (IMS) Applications

The sections of the Overview Page include:

– General Information

Defines general SIP project settings such as Display name, Description,
Session time out, and whether the application is distributable.

– Servlets

Lists the servlets defined for the application. Clicking the 'Details' button
shows the Servlets page.

– Login

Defines the Login configuration. The options for Authentication method
are: BASIC, DIGEST, and CLIENT_CERT.

– Security

Lists the security roles and constraints defined for the application. Clicking
the 'Details' button shows the Security page.

– Icons

Defines the applications small and large icons. The 'Browse' buttons open
the appropriate dialogs to allow the user to select images already defined
in the project.

– Listeners

Lists the listeners defined for the application. Clicking the 'Details' button
shows the Variables page.

– References

Lists the references currently defined for this application. Clicking the
'Details' button shows the References page.

– Environment Variables

Lists the environment variables defined for the application. Clicking the
'Details' button shows the Variables page.

– Context Parameters

Lists the context parameters defined for the application. Clicking the
'Details' button shows the Variables page.

� Servlet page

The Servlet page enable you to add, modify and remove servlets in the
project. It extends the Servlets page from the Web Deployment Descriptor.
Most sections are the same as the Web deployment descriptor, with the
following exceptions. The URL Mapping section is replaced with a Mapping
section specific for SIP. Also, the WebSphere Programming Model
Extensions and WebSphere Extension sections are removed.

 Chapter 4. IBM WebSphere Application Server Toolkit 75

� Security page

The Security page enable you to manage security roles and constraints for
the project. This page extends the Security page of the Web deployment
descriptor editor. It replaces the Web Resource Collection section with the
SIP Resource Collection sections.

– Security role

This subsection allow for viewing or addition of security roles.

– Security constraints

This subsection allows viewing or addition of constraints. Clicking the Add
button displays the entry window where you enter the SIP servlet, select
the SIP methods and associated constraints.

76 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 4-10 Adding Security Constraints to a SIP Servlets

The result is displayed on the Security page as illustrated in Figure 4-11.

 Chapter 4. IBM WebSphere Application Server Toolkit 77

Figure 4-11 SIP Deployment Descriptor Security page

– Authorized role

The Authorized roles sub-section enable you to add roles for the selected
security Constraint. This is the standard section of the Web tools. It allows
definition of roles authorized to access the SIP resource collections of the
predefined security constraint.

78 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 4-12 Adding Authorization Constraints

The result is displayed on the Security page, showing all fields filled up as
illustrated in Figure 4-13 on page 80.

 Chapter 4. IBM WebSphere Application Server Toolkit 79

Figure 4-13 SIP Deployment Descriptor with defined Security Constraints

� Variable page

The Variable page enable you to manage the list of listeners, context
parameters and environment variables in the project.

You can add or remove the following from the variables entry window:

– Listeners

This defines the <listener> elements in the sip.xml.

– Context Parameters

This defines the <context-param> elements in the sip.xml.

– Environment Variables

This defines the <env-entry> elements in the sip.xml.

80 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 4-14 shows an example of defining Life-cycle listeners.

Figure 4-14 SIP Deployment Descriptor Life-cycle Listener definition

 Chapter 4. IBM WebSphere Application Server Toolkit 81

Figure 4-15 Specifying Interfaces for Life-cycle Listeners

� References page

The References page enable you to manage the project's resource
references. The following types of references are supported: local EJB
reference, remote EJB reference, resource reference, and resource
environment reference.

� Source page

And finally the Source page displays the generated sip.xml source code.

4.2.4 Sample SIP services

AST contains several Samples that demonstrate particular Session Initiation
Protocol (SIP) capabilities. To access these Samples:

1. From the Help menu, click Samples Gallery.

2. Click Technology Samples > SIP.

82 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Three samples are included and each has their own page, which includes setup
instructions as well as a wizard that will import the sample into the workspace

The samples that are included with the toolkit are:

� Call Blocking sample
� Call Forwarding sample
� Third Party Call Control

Figure 4-16 Loading Samples into AST

Call blocking sample
This sample demonstrates the use of SIP Servlet 1.0 APIs using ISC
components. The sample checks a simple list (access list file) to determine if the
caller is valid. The list is stored in a file which is part of the deployment package.
If the caller is blocked for a particular callee, then the call is rejected. If accepted,
the call is sent to proxy to send an invite to the callee. This sample can be
customized by adding to this forward list and rerunning the sample.

Once loaded in AST, you can see, in the src\com.ibm.siptools.samples folder,
three Java files.

� AccessControlList.java - this class manages the file that stores the list of
blocked callers

� AppConfigHTTP.java - this is the HTTP servlet that can be called from a
browser to specify which callers are blocked

� CAllBlockingSiplet.java - this is the Siplet that performs the call blocking
function

 Chapter 4. IBM WebSphere Application Server Toolkit 83

Figure 4-17 Exporting the sample

Open a Web browser and enter the URL of AppConfigHTTP; this is
http://localhost:9081/CallBlockingSample/AppConfigHTTP

Note: You need to first use the import/export tool to export the call blocking
sample application as either a standalone SAR or as part of a Enterprise
ARchive (EAR) package. Then you can install it to the application server using
the administrative console.

84 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 4-18 Call Forwarding Sample Web interface

Note: The sample applications can be exercised by a SIP Phone or a SIP tool
such as SIPp. The sample SIP applications in Part 3, “SIP applications” on
page 203 show how to use SIP Phones and SIP tool such as SIPp to test SIP
applications.

 Chapter 4. IBM WebSphere Application Server Toolkit 85

Figure 4-19 Blocking a caller

Call forwarding sample
This sample demonstrates the use of SIP Servlet 1.0 APIs. The sample performs
checks to determine if the callee is in the forward list. The forward list is a simple
list located in a file in the deployment package. If the callee is in the forward list,
then the corresponding forward list is retrieved and the INVITE is proxied to this
address.

86 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 4-20 Call Forwarding sample Web interface

This sample can be exercised by a SIP Phone or a SIP tool such as SIPp.

Third party Call Control sample
This sample demonstrates how to use converged capability by implementing a
controller which sets up and manages a communications relationship between
two parties.

You can exercise this sample application with two SIP phones. You initiate calls
from the configuration interface
http://localhost:9081/ThirdPartyCCSample/ThirdPartyCCServer as shown in
Figure 4-21.

Figure 4-21 Third Party Call Control Web interface

 Chapter 4. IBM WebSphere Application Server Toolkit 87

4.2.5 Hardware and software requirements

AST runs on hardware suitable for running Microsoft Windows XP or Linux with a
minimum of an Intel® Pentium® III 880 MHz processor or equivalent (1.0 GHz
recommended). The following is the summary of the requirements:

� Hardware requirement

Table 4-1 AST hardware requirement

� Supported operating systems

– Windows XP
– Windows 2000
– Windows Server® 2003
– Red Hat Enterprise Linux 3.0
– Red Hat Desktop Linux 3.0
– SUSE Linux Enterprise Server (SLES) 9

Hardware Requirement

Processor � Intel Pentium III 880 MHz processor

� 1.0 GHz recommended

Memory � 512 MB RAM (minimum)

� 1 GB is recommended

Disk space � 900 MB disk space

� 100 MB TEMP disk space is needed during installation

Display 1024x768 (minimum)

88 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 5. IBM IMS Enablement Toolkit

This chapter provides an introductory overview of the IMS Enablement Toolkit, a
set of additional resources that you add to the WebSphere Application Server
Toolkit (AST) for development of IMS foundation applications that exercise
Diameter, Presence and Parlay X.

This chapter contains the following:

� IMS Enablement Toolkit overview

� Developing IMS foundation applications

� Sample IMS foundation applications

5

© Copyright IBM Corp. 2007. All rights reserved. 89

5.1 IMS Enablement Toolkit overview

The IMS Enablement Toolkit consists of multiple resources (libraries and
WSDLs) and samples that are loaded into your installation of the AST.

The IMS resources include the following:

� Diameter resources

– WSDL: Creates a WSDL directory and imports Diameter WSDL files

– Libraries: Imports libraries into the Web App Libraries directory

� Presence resources

– Libraries: Imports presence library into the Web App Libraries directory

� Parlay X 2.1 resources

– WSDL: Creates WSDL directory and import all Parlay X 2.1 WSDLs

Before you can import the IMS Enablement Toolkit resources you must first
create a SIP project. You import the appropriate IMS resources into your project
based on your application’s functionality. 5.2, “Developing IMS foundation
applications” on page 90 provides a walk through of the steps for including IMS
resources into your SIP Project.

5.2 Developing IMS foundation applications

Start by creating a new project by selecting File → New → Example in AST.
Select a SIP Project as illustrated in Figure 5-1 on page 91.

90 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-1 Create a SIP project

Enter the name of the project IMS SIP Project and click Next. Figure 5-2 on
page 92 shows naming of a SIP project.

 Chapter 5. IBM IMS Enablement Toolkit 91

Figure 5-2 Naming the SIP project

Leave the proposed SIP Facets as is or change them according to your project
needs. Ensure that SIPModule is selected and then click Finish. Figure 5-3 on
page 93 shows selection of project facets.

92 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-3 Selecting project facets

Now that the project is created, you are ready to import the IMS resources to the
project. Right-click the project and click Import. Select IMS Resources.
Figure 5-4 on page 94 shows selection of SIP project for IMS resource
importation.

 Chapter 5. IBM IMS Enablement Toolkit 93

Figure 5-4 Select project for IMS resource importation

Choose the IMS Resources you want to import. Figure 5-5 on page 95 shows
selection of IMS resources to import. Note that all the IMS resources in
Figure 5-5 on page 95 are selected for importation. After making your selections,
click Next to continue.

94 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-5 Selecting IMS resources to import

If you checked the selection for Parlay X 2.1 WSDL, you will see a list of Parlay X
2.1 WSDLs to import. Choose the ones you need for your project. Figure 5-6 on
page 96 shows the selection of Parlay X 2.1 WSDLs.

 Chapter 5. IBM IMS Enablement Toolkit 95

Figure 5-6 Selecting the Parlay X 2.1 WSDLs to import

Clicking Finish will initiate importation of the IMS resources you have selected
for your project. Once the load is finished, expand the project to see the Libraries
and WSDLs that is loaded. Figure 5-7 on page 97 shows the list of imported
resources.

96 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-7 List of imported IMS Resources

With the resources loaded, you are ready to develop IMS foundation
applications.

5.2.1 Diameter client application

Once the Diameter Rf and Sh libraries have been loaded as part of the
installation process of the IMS Enablement Toolkit, it is possible to add the jar
files in Figure 5-8 on page 98 to the Java Build Path.

 Chapter 5. IBM IMS Enablement Toolkit 97

Figure 5-8 Diameter client libraries

IMS Toolkit also provides WSDLs for the following:

� Defining the Rf services used for offline charging (DiameterRfService.wsdl)

� Defining the Sh services used for subscriber profile management
(DiameterShService.wsdl)

� Receiving notifications from the Sh subscriber profile Web Services when
information regarding a specified subscriber has been changed
(DiameterShNotifyService.wsdl)

You can explore these WSDLs in AST as shown in Figure 5-9 and Figure 5-10 on
page 99. Note that for reading convenience the WSDL description has been split
into the two images.

98 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-9 DiameterRfService.wsdl definition (part 1)

Figure 5-10 DiameterRfService.wsdl definition (part 2)

 Chapter 5. IBM IMS Enablement Toolkit 99

Rf accounting Web Services provide a Diameter messaging interface to enable
applications to send accounting messages to accounting or billing servers. The
IMS Application Server application is referred to as a client of the Web service
application. The Diameter client sample (5.3.2, “Diameter client samples” on
page 110) application included in IMS Enablement Toolkit is an example of how
to use those Web Services to program Rf clients.

5.2.2 Presence Server components

Interfacing with the Presence Server is mainly through SIP and XCAP protocols
and therefore it does not need any special tools support other than the one
already provided by HTTP and SIP support. The Presence Server also has an
Authorization API for allowing or disallowing subscription to a presentity.
Figure 5-11 on page 100 shows the authorization classes from the IMS
Enablement Toolkit presence library.

Figure 5-11 Presence Server authorization classes

Once the authorization classes are installed, Presence Server makes use of the
stored permission policies and authorization API to determines if the requester,
or watcher, is authorized to subscribe on a given presentity.

Note: Authorization API help in AST under IMS Toolkit, Developing,
Authorization API provides more information about how to use the API.

100 Developing SIP and IP Multimedia Subsystem (IMS) Applications

5.2.3 Parlay X Web Services

Support for Parlay X Web Services is provided through a set of WSDLs. The
WSDLs are in categories which range from Third party call to Presence. If you
chose to import Parlay X 2.1 Resources (see illustration in Figure 5-5 on
page 95), you will be presented with the option to select the WSDLs that you
want to import. Figure 5-6 on page 96 shows the different categories of WSDLs
that are supported. You select the WSDLs that you want to import and click
Finish to initiate the importation.

The sample application scenario in Part 4, “Developing IMS applications” on
page 299 shows how to use the Parlay X WSDLs to invoke Web Services.

5.3 Sample IMS foundation applications

The IMS Toolkit comes with three samples applications, one IMS Service Control
(ISC) SIP servlet and two Diameter clients. The samples demonstrates the
usage of SIP Servlet API and ISC, and Diameter Rf and Sh test clients.

5.3.1 ISC Interface sample

The ISC SIP servlet sample demonstrates the use of SIP Servlet API and ISC to
implement a Back to Back User Agent (B2BUA) service. Figure 5-12 on
page 102 shows the interaction flow between the User Agents, the SIP server
and the CSCF.

The ISCDemo SIP Servlet takes a call from UA1 (User Agent 1), receives INFO
over this SIP session, which provides the address for UA2 (User Agent 2).
ISCDemo makes outbound call to UA2 (through the S-CSCF), and then sends
INFO to UA2 and UA1 separately. Then ISCDemo hangs up the call with UA1
and UA2.

 Chapter 5. IBM IMS Enablement Toolkit 101

Figure 5-12 ISC Demo call flow

You load ISC SIP servlet sample by clicking File → New → Example.

Figure 5-13 Load Example

[17] INFO

[2]INVITE

[11] INVITE

[20] 200 OK [19] 200 OK

[18] INFO

[9] 200 OK

[3] 200 OK

[5] ACK [6] ACK

[4] 200 OK

[7] INFO
[8] INFO

[12] INVITE

[13] 200 OK[14] 200 OK

[15] ACK [16] ACK

[21] INFO

[24] 200 OK

[22] INFO

[23] 200 OK

[10] 200 OK

[25] BYE

[28] 200 OK

[26] BYE

[27] 200 OK [29] BYE

[32] 200 OK
[31] 200 OK

[30] BYE

UA1 CSCF SipServer CSCF UA2
[1]INVITE

102 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Expand the SIP folder and select ISC SIP.

Figure 5-14 Select the ISC SIP sample

In the ISC SIP window, leave the default project name and click Finish.

 Chapter 5. IBM IMS Enablement Toolkit 103

Figure 5-15 Name the ISC project

Once the loading is complete, expand the ISC SIP folder to see the Java
sources, including the Java code for this example.

104 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-16 ISC SIP project in AST workspace

The ISCDemoApp states and state transition diagrams in Figure 5-17 on
page 106 and Figure 5-18 on page 107 provide more information to help you
understand the Java code.

 Chapter 5. IBM IMS Enablement Toolkit 105

Figure 5-17 ISCDempApp states diagram

[17] INFO

[2]INVITE

[11] INVITE

[20] 200 OK

[9] 200 OK

[3] 200 OK

[6] ACK

[8] INFO

[14] 200 OK

[15] ACK

[21] INFO

[24] 200 OK

[25] BYE

[28] 200 OK [29] BYE

[32] 200 OK

AWAITING_UA1_Ack

AWAITING_UA1_Info

INVITING_UA2

INFOING_UA2

INFOING_UA1

HANGUP_UA1

HANGUP_UA2

SipServer
AWAITING_UA1

106 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-18 ISCDemoApp state transition diagram

ISCDemo is the SIP Servlet. It implements the doRequest, doResponse,
doInvite, doAck, doBye, doError, doInfo, doSuccess methods as shown in
the class outline in Figure 5-19 on page 108 and as required by the flow in
Figure 5-12 on page 102.

AWAITING_UA1_Ack

AWAITING_UA1_Info

INFOING_UA2

INFOING_UA1

HANGUP_UA1

HANGUP_UA2

AWAITING_UA1

INVITING_UA2

COMPLETE

Event: 6
Action:

Event: 8
Action: 9,11

Event: 14
Action: 15,17

Event: 20
Action: 21

Event: 32
Action:

Event: 28
Action: 29

Note:
Event – incoming SIP MSG
Action – outgoing SIP MSGs
Exceptions not considered

Event: 2
Action: 3

 Chapter 5. IBM IMS Enablement Toolkit 107

Figure 5-19 ISCDemo methods

The implementation of the doInvite() method includes constructors for
ISCDemoApp and ISCDemoAppHandler, and the DemoApp state transition
calls.

ISCDemoApp holds all the states and the corresponding getters and setters.
When transitState() method is called, control is transferred to
ISCDemoAppHandler to handle the request. Figure 5-20 on page 109 shows
the methods of ISCDemoApp.

108 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-20 ISCDemoApp methods

ISCDemoAppHandler performs actions needed to transition from the current
state into the specified new state. It also handles the actions for processing
INVITE from UA1. Figure 5-21 on page 110 shows the methods of
ISCDemoApphandler.

 Chapter 5. IBM IMS Enablement Toolkit 109

Figure 5-21 ISCDemoApphandler methods

5.3.2 Diameter client samples

Two sample Diameter clients are delivered with the IMS Enablement Toolkit;

� Diameter Rf test client which uses the offline charging WSDL
DiameterRfService.wsdl.

� Diameter Sh test client which uses the subscriber profile management WSDL
DiameterShService.wsdl.

To load the Diameter Rf test client:

1. Click File → New → Example.

2. Expand the Diameter folder and select Diameter Rf Test client.

3. Click Next.

Note: Both applications are similar in nature so only the walk through of the
Diameter Rf test client is presented in this section.

110 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-22 Import the Diameter Rf Test Client

Leave the default project name as is and click Finish as shown in Figure 5-23 on
page 112.

 Chapter 5. IBM IMS Enablement Toolkit 111

Figure 5-23 Name the Diameter client project

Once the loading is complete, expand the Diameter Rf Test Client in the
Navigator pane. You may see red crosses. If you double-click
DHADiameterRfTestClient.java, the import of javax.xml.rpc.Stub has a red
cross in front of the line as illustrated in Figure 5-24 on page 113. This indicates
that you have libraries that have yet to be included to your project.

112 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-24 Missing imports in Diameter RfTest Client

Now let's check the Java Build Path. Right-click the project name and select
Properties. Select the Java Build path and Libraries tab. You can expand the
IMS Toolkit libraries and verify that the Diameter client libraries have already
been added to the path. Figure 5-25 on page 114 shows an illustration of the
JARS and class folders on the Java build path.

 Chapter 5. IBM IMS Enablement Toolkit 113

Figure 5-25 Modify the Java Build path

If it is the case that the IMS Toolkit libraries are not already on the build path, you
can add it by clicking Add Library button and selecting IMS Toolkit Libraries.
Click Next to continue. See an illustration in Figure 5-26 on page 115.

114 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-26 Add a Library to the Java Build Path

You can then select Diameter and/or Presence libraries and click Finish as in
Figure 5-27 on page 116.

 Chapter 5. IBM IMS Enablement Toolkit 115

Figure 5-27 Add IMS Toolkit Libraries

Here, we chose the WebSphere Application Server v6.1 stub by selecting it
and clicking Finish. See the illustration in Figure 5-28 on page 117.

116 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 5-28 Add WebSphere Server runtime libraries

The WebSphere APIs JAR file will be added to your project (see illustration in
Figure 5-29 on page 118) and you should no longer have the red crosses as in
Figure 5-24 on page 113.

 Chapter 5. IBM IMS Enablement Toolkit 117

Figure 5-29 Summary of Java Build Path

Note: The process of loading the Diameter Sh test client is identical, so you
have to perform similar operations for Diameter Sh test client.

118 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 6. IBM WebSphere Integration
Developer

WebSphere Integration Developer (WID) provides the composite applications
development platform for IBM Telecom Web Services Toolkit. In this chapter we
introduce WID, the key concepts and components for creating and assembling
services.

This chapter contains the following:

� Overview

� Working with IBM WebSphere Integration Developer

� IMS service components

� Technical information

6

© Copyright IBM Corp. 2007. All rights reserved. 119

6.1 Overview

WebSphere Integration Developer (WID) is an Eclipse-based visual application
development environment for creating integrated applications based on
service-oriented architecture. WID enables both the creation and assembling of
component services. These services include business rules, human tasks,
business state machines, and mediation flows.

WID is designed to be used by integration specialists to assemble component
services into new services and applications. WID visual editors provide a layer of
abstraction between the interfaces of the components and the actual
implementations. By dragging and dropping the components into the visual
editors and wiring their interfaces together, the integration specialist is able to
create services and applications without detailed knowledge of the underlying
implementation of each component.

WID supports both top-down design approach where the implementation for one
or more components does not already exist and is added later, and bottom-up
approach where the implementation of the components already exist. The
integrated services comply to industry-wide standards, for example, business
processes which are composed of components comply to the industry-standard
Business Process Execution Language (BPEL).

WID supports modeling, building, testing and debugging of solutions that deploy
to WebSphere Process Server and WebSphere Enterprise Service Bus.

6.2 Working with IBM WebSphere Integration Developer

WebSphere Integration Developer is based on a number of key concepts. In this
redbook, we focus on those concepts which are relevant for integration in the
context of IMS applications.

6.2.1 Key concepts

The WebSphere Process Server SOA model defines three abstractions that are
key to any integration project. Figure 6-1 on page 121 provides an illustration of

Note: We recommend reading the IBM redbook Getting started with
WebSphere Integration Developer and WebSphere Process Server,
SG24-7130, for a complete and detailed introduction to the WebSphere
Integration Developer and WebSphere Process Server business integration
concepts and tools.

120 Developing SIP and IP Multimedia Subsystem (IMS) Applications

these concepts. The concepts in conjunction with the intuitive graphical
environment of the WebSphere Integration Developer offer powerful tools for the
process designer and integration developer.

Figure 6-1 WebSphere Process Server key abstractions

� Data objects

Service Data Object (SDO) is used to define the data level concept. SDOs
can describe complex data structures and provide the universal means for
representing and accessing data, as well as for transferring data between
components. SDOs coupled with a number of extensions are used to
implement Business Objects. WebSphere Process Server define SDO as an
abstract concept, and WebSphere Integration Developer represent SDOs as
business objects.

� Invocation and integration

Service Component Architecture (SCA) provide the invocation level concept
for integrating artifacts as service components with well-defined interfaces.
SCA also introduces the concept of modules, which groups together service
components and provides further specification and encapsulation of services.

WebSphere Process Server supports the Service Component Architecture. It
provides integration artifacts such as processes, business rules and human
tasks. WebSphere Process Server support of SCA makes it possible for
example to replace a human task for approval with a business rule by simply
replacing the service components in the assembly diagram without changing
either the business process or the invocation of the business process.

DataData Service Data Objects (SDO)
(Plus extensions)

Service Data Objects (SDO)
(Plus extensions)

InvocationInvocation Service Components (SCA)
(Plus extensions)

Service Components (SCA)
(Plus extensions)

CompositionComposition WS-BPEL
(Plus extensions)

WS-BPEL
(Plus extensions)

 Chapter 6. IBM WebSphere Integration Developer 121

� Composition

The composition level concept of orchestrated composite services is realized
in WebSphere Process Server by Business Process Choreographer which
provides support for business processes and human tasks. It supports
business process modeling based on Web Services Business Process
Execution Language (WS-BPEL or BPEL). BPEL is a model and a grammar
for describing the behavior of business processes based on interactions such
as human-to-human, human-to-machine, and machine-to-human.

6.2.2 Modules

Modules consist of service components, imports and exports which reside in the
same project and root folder. Modules also contains the wiring that links the
components and the bindings needed for the imports and exports.

There are two types of modules:

� Module

Also referred to as a business integration module. It contains choice of many
component types often used to support business processes. Modules deploy
to the WebSphere Process Server.

� Mediation module

Contains one component, a mediation flow component, plus zero or more
Java components that augment the mediation flow component. Mediation
modules can be deployed to either the WebSphere Process Server or the
WebSphere Enterprise Service Bus server.

Module and mediation module artifacts include:

� Module definitions

Defines the module.

� Service components

Service components define the services in the module. The name for a
service component must be unique in a module, however a service
component can have an arbitrary display name, which is typically a name
more useful to a user.

� Imports

Imports define the calls to services external to this module.

� Exports

Exports are used to expose components to callers that are external to this
module.

122 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� References

Refer to components in other modules.

� Stand-alone references

Stand-alone references are applications that are not defined as Service
Component Architecture components (for example, JavaServer™ Pages™),
which enable these applications to interact with Service Component
Architecture components. There can be only one stand-alone reference
artifact per module.

� Other artifacts

These artifacts include WSDL files, Java classes, XSD files and BPEL
processes.

Figure 6-2 shows the illustration of a simple service module. The service
component is implemented as BPEL process. It exposes an interface Export.
The service component imports the services of a component called Import and
the service of another service component, that implements a human task.

Figure 6-2 Simple service module

6.3 Components

Business integration modules contain interconnected SCA components. The
WebSphere Integration Developer support seven different types of components,

ImplementationImplementation

ImplementationImplementation

Business ProcessBusiness Process Import

ExportExport Service
Component

Service
Component

Service Module

Human TaskHuman Task

 Chapter 6. IBM WebSphere Integration Developer 123

which are described in Table 6-1 on page 124. All component types adhere to the
same component architecture but are realized using different technologies.

Table 6-1 SCA components

The structure of an SCA component is illustrated in Figure 6-3 on page 125.

A component consists of the following:

� Implementation

Implements the component functionality using a choice of various languages.
Implementations are hidden from WID visual editors.

� Interface

Components contain one or more interfaces which define the inputs, outputs
and faults. Interfaces support asynchronous and synchronous interaction
styles and may be defined in one of two languages: a Web Services
Description Language (WSDL) or Java.

Component Description Applicable for IMS?

Process Implements BPEL process Yes - this is the most common
implementation

State machine Implements a state
machine

Typically the SIP servlet implements
the SIP protocol state machine. Use
with care. It is difficult to coordinate two
interacting state machines.

Human task Implements human
activities

Yes - if human interaction is part of the
application

Java A Java component Yes - in cases where J2EE components
are part of the service.

Rule group Implements a set of
business rules

Yes.

Selector Rules-based, dynamic
selection of import Web
Services at runtime

Yes.

Interface map Mapping between
interfaces

Yes.

Note: You cannot mix WSDL and Java definitions for a given interface.

124 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� References

References identify the interface of other services or components that this
component requires or consumes. A component can contain zero or more
references.

Figure 6-3 Structure of SCA component

There a three pseudo-components. They differ from the other components in that
they don’t have an implementation that is executable by the WebSphere Process
Server. The pseudo-component is basically an SCA-wrapper around these
non-SCA implementations. This way they are available to the assembly editor,
where they can be wired to the other components. The pseudo-components are
described in Table 6-2.

Table 6-2 SCA pseudo-components

Human
taskJava BPEL Interface

maps

Implementation Types

Java

WSDL
Port Type Interface Reference

Java

WSDL
Port Type

Component

Implementation

State
machine

Business
rules Selector

Component Description Applicable for IMS?

Import References external
services

Yes - SIP servlet is a representation of
import component

Export Exposes the interface of
the module to the outside
world

Yes - all enablers and foundation
services that require choreography are
representations of export component

 Chapter 6. IBM WebSphere Integration Developer 125

Both, import as well as export components require a binding, which specify the
means of transferring data from the modules. An import binding describes the
specific way an external service is bound to an import component. An export
binding describes the specifics of how a module's services are made available to
clients. Typically in the IMS world, the bindings would point to the Web Services
endpoint. You may also generate bindings to JMS queues or other SCA
components.

6.3.1 Business Integration perspective and views

The WebSphere Integration Developer adds a new perspective to the Eclipse
framework, the Business Integration perspective. Figure 6-4 on page 127 shows
the main view of the Business Integration perspective.

Stand-alone
reference

Non-Web service client of
the module

Most likely not - there should be a single
point of entry to the IMS application and
this is the SIP servlet. The converged
container enable access from J2EE
applications through the SIP servlet.

Note: You can find more information about Service Component Architecture
in the WebSphere Integration Developer Information Center at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?t
opic=/com.ibm.wbit.help.prodovr.doc/topics/cservcomps.html

Component Description Applicable for IMS?

126 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.prodovr.doc/topics/cservcomps.html

Figure 6-4 Business Integration perspective

The main view of this perspective is the Business Integration view, which
provides the outline for all integration artifacts. Let us take a closer look at the
structure as illustrated in Figure 6-5 on page 128.

� MyImsProcessModule

This entry represents the module. Double-clicking it will open the assembly
diagram. This folder contains references to import and export components.

� Business Logic

These sub-folders contain the implementations of the components. For
example the Processes folder contains BPEL processes. Each sub-folder
contains specific diagrams and editors.

 Chapter 6. IBM WebSphere Integration Developer 127

� Data Types

This folder contains all business objects that you define in your project, as
well as those that are imported from external interfaces (for example, WSDL
files and the types defined in .xsd schema files). This folder also contains the
business object diagrams and editor.

� Interfaces

This folder contains all interfaces, including the imported and exported
interfaces.

� Mapping

This folder and the sub-folders contains supporting components such as Data
Maps for mapping business objects to one another, Interface Maps for
mapping interfaces, Relationships for defining relationships between
business objects as well as Roles.

Figure 6-5 Business Integration view

6.3.2 Adding custom logic to BPEL processes

Various activities in a BPEL flow require the specification of custom logic. For
example:

� The while loop activity require that you specify the exit condition.

� The choice activity require that you specify the conditions to follow a branch.

� The snippet activity enable you to specify custom logic.

128 Developing SIP and IP Multimedia Subsystem (IMS) Applications

You have two options for specifying the logic

� By writing Java code.

� By using a visual editor to specify the logic graphically.

Figure 6-6 shows an illustration of what the visual editor looks like. To create logic
using the visual editor, you drag and drop the snippets onto the canvas and wire
them together by grabbing the yellow link icon and dragging it to the desired
target snippet.

Figure 6-6 Visual snippet editor

Let us introduce the key elements of the visual editor:

� Editor selector buttons

The radio buttons at the top of the canvas enable you switch between the
Java and the visual editors.

� Tools palette

The tools palette to the left of the canvas provides you quick access to the
following:

– Expression® editor
– Set of standard snippets you can choose from

Attention: You can use either Java code or graphical representation to
specify the logic. You cannot mix and match the two methods. Switching from
one method to the other will result in you loosing the logic you have created so
far.

 Chapter 6. IBM WebSphere Integration Developer 129

– Java classes and interfaces
– Choice construct
– While construct
– For each construct
– Repeat construct
– Throw snippet to throw exceptions
– Return snippet

� Visual panel

The panel on the right side of the canvas shows Inputs, Outputs, Exceptions
and Variables that are available to the snippet. They are inherited from the
process scope.

The custom Java logic in Figure 6-7 performs the same function as the visual
snippet in Figure 6-6 on page 129.

Figure 6-7 Java snippet

6.4 IMS service components

IMS applications developed using WID conform to IMS service architecture
presented in 2.3, “Services in IMS” on page 38 and implements service
components that are realized using Service Component Architecture (SCA) and
packaged as modules. Figure 6-8 on page 131 shows a typical IMS application
and its components.

Important: To import the required Java libraries, click anywhere on the
business process editor canvas. In the Properties view of the business
process select the tab Java Imports. In there define the import statements
like: import java.util.List;

130 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 6-8 Typical IMS application components

The typical IMS application includes the following:

� Exactly one SIP servlet that triggers the BPEL process by invoking the
exposed Web Services. Figure 6-9 on page 132 is the illustration of the
typical IMS application. It shows a single SIP servlet “MyService SIP” servlet.

� Optionally, there is exactly one BPEL process (MyService BPEL process) that
choreographs existing and IMS enablers.

� The BPEL process may import one or more Web Services from existing
enablers (SMS Service, eMail Service).

IMS Enablers

SIP Servlets

Process Choreograhpy

Legacy Enablers

MyService
SIP Servlet

MyService
BPEL process

MyService
Business Rule

SMS Service

Presence Service
SIP Servlet

Wrapper

Presence Service
SI

P

SOAP/HTTP SOAP/HTTP

SOAP/HTTP

SIP

SOAP
/HTTP

eMail Service

SOAP/HTTP

Note: The illustration in Figure 6-9 on page 132 shows the SIP servlet
“MyService SIP” servlet, BPEL process “MyService BPEL” and imported
Web Services

 Chapter 6. IBM WebSphere Integration Developer 131

� One or more Web Services from IMS enablers (Presence Service SIP Servlet
Wrapper) may be imported by the BPEL process

� The BPEL process may interact (import services) with components in other
service modules such as Business Rules, Human Tasks or Selectors.

Figure 6-9 Illustration of a typical IMS application

Figure 6-9 shows the WebSphere Integration Developer assembly diagram of the
typical IMS application.

Presence
Service

SIP servlet
wrapper

MyService
SIP servlet

MyService
BPEL

Process

SMS
Enabler

MyService
Business

Rule

eMail
Enabler

132 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 6-10 Assembly diagram of typical IMS application

6.4.1 Assembling components

There are specific steps that you have to follow to assemble components in order
to build service modules for IMS applications. The proposed sequence is just one
approach to get you from start to finish. You may change the sequence within
certain limits, for example you can take a top-down approach by starting from the
assembly diagram.

1. Start by creating your implementation component, in this instance the BPEL
process. At this point you don’t have to specify the process flow or any other
internal logic. You just need to know the component type.

2. Create the business objects that are exposed in the export interface of your
component.

3. Create the export interface of your component, its operations and
parameters.

4. Import any WSDL files for the enabling or foundation services you want to
choreograph with the BPEL process.

5. Create the process flow of the BPEL process.

6. Create the assembly diagram.

7. Test you module.

 Chapter 6. IBM WebSphere Integration Developer 133

A detailed example for each of these steps is described in 12.3, “BPEL
development” on page 361.

6.4.2 Component tests

WID provides an integrated test environment which enable comprehensive
debugging and testing of the modules and components you develop. The
environment incorporates integrated versions of the WebSphere Process Server
and the WebSphere Enterprise Bus which provides the BPEL and mediation flow
runtime environments.

WID provides three tools that work in the integrated test environment to enable
you to test, debug and monitor the components and modules that you develop:

� Integration test client

You can use the integration test client to test your modules and components
and report the result of your tests. All testing is performed on the operations
defined by the interfaces of your components. The test enable you to
determine whether the components are properly implemented and that
references are correctly wired. Integration test client supports automatic
emulation for unimplemented components and unwired references, this
means that your modules need not be fully implemented before you can
initiate testing.

Integration test client intercepts invocations to emulated components or
references and routes the control to the associated emulators. Two types of
emulators are supported:

– Manual

With a manual emulator, you specify the response values for an emulated
component or reference at runtime. When a manual emulator is
encountered during a test, a manual Emulate event is generated and the
test pauses to enable you to manually specify some output parameter
values or throw an exception for the emulated component or reference.

– Programmatic

In contrast, when a programmatic emulator is encountered during a test, a
programmatic Emulate event is generated and the output parameter
values or exception are automatically provided by a Java program
contained in a visual snippet or Java snippet.

� Integration debugger

Using the integration debugger you can debug different types of components
including visual snippets, business object data maps, business processes,
state machines, mediation flows, business rule sets and decision tables.

134 Developing SIP and IP Multimedia Subsystem (IMS) Applications

The integration debugger enable you to add or remove, enable or disable
breakpoints. Breakpoints can be set at specific locations where you want
execution to pause so you can examine the component status. Depending on
the type of component, it is possible to set breakpoints to pause execution
prior invocation of the component and immediately on exit from the
component.

Execution of code will stop and cause the integration debugger to be invoked
if a breakpoint is encountered and the breakpoint is enabled. A disabled
breakpoint on the otherhand, will not stop or cause invocation of the
integration debugger.

Table 6-3 shows a list of the components you can set breakpoints on and
where they can be set.

Table 6-3 Component breakpoints

� Event monitor

The event monitor is used for generating and monitoring of a wide variety of
business integration components and their elements. Using the event monitor
you can generate and monitor Common Base Event, business process and
human task audit events. Common Base Event events are managed by the
Common Event Infrastructure (CEI), whilst the business process and human
task audit events are logged in the process choreographer database of
WebSphere Process Server.

The monitorable elements for each editor are listed in Table 6-4 on page 136.

Editor Integration components Where to set breakpoints

Business process editor Business processes Activities, Java snippets

Business state machine
editor

State machines States

Business object mapping
editor

Business object data maps Transformations, Java
snippets

Business rule set editor Rule sets Rules, templates,
conditions, actions

Decision table editor Decision tables Conditions, actions,
values, terms

Visual snippet editor Visual snippets Nodes, custom visual
snippets, Java visual
snippets

Mediation flow editor Mediation flows Mediation primitives,
nodes

 Chapter 6. IBM WebSphere Integration Developer 135

Table 6-4 Monitorable elements

Using the test tools
You invoke the integration test client from the assembly editor. To test a module,
right-click anywhere on the canvas and select Test Module as shown in
Figure 6-11 on page 137.

Editor Monitorable element

Assembly editor (CEI only) Operation

Business process editor (CEI and
Audit Log)

Assign, Compensate, Empty, Flow (Parallel
Activities), Invoke, Pick (Receive Choice),
Process, Receive, Reply, Rethrow, Scope, Script,
Sequence, Staff, Switch (Choice), Template (not
shown), Terminate, Throw, Variable, Wait, While
(While loop)

Business object mapping editor
(CEI only)

Map, Transformation (all kinds)

Business rule group editor (CEI
only)

Operation

Business state machine editor
(CEI only)

Action, Entry, Exit, Guard, State, State Machine
Definition (State Machine), Timer, Transition

Human task editor (CEI and Audit
Log)

Escalation, Task, Task Template

Interface mapping editor (CEI
only)

Operation Binding, Parameter mediation (all kinds)

Selector editor (CEI only) Operation

Note: Additional information about WID testing, debugging and monitoring is
available at:

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?t
opic=/com.ibm.wbit.help.debug.doc/topics/ccbreak.html

136 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6rxmx/index.jsp?topic=/com.ibm.wbit.help.debug.doc/topics/ccbreak.html

Figure 6-11 Initiating a module test in the Integrated test client

To test a component, select the component, right-click and select Test
Component as shown in Figure 6-12 on page 138.

 Chapter 6. IBM WebSphere Integration Developer 137

Figure 6-12 Initiating a component test in the Integrated test client

The main interface to configure, start and stop your tests is the Test Editor.
Figure 6-13 on page 139 shows an illustration of a Test editor screen.

138 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 6-13 Test Editor

The Test Editor consists of two pages:

� Events page

The events page is the main page, where you specify the test scenario and
where you monitor the test execution.

In the Detailed Properties pane on the right side of the page you define which
module, component, interface and operation you want to test. When you have
selected an operation, the table Initial request parameters shows all input
parameters. You now can assign values to these parameters. For simple
types you can enter a value in the column Value. For lists and arrays you first
need to add a new entry by right-clicking the list parameter and selecting Add
Element.

Once you have started the test all monitored events are shown in the Events
pane on the left side of the page as shown in Figure 6-14 on page 140.

 Chapter 6. IBM WebSphere Integration Developer 139

Figure 6-14 Test events

� Configurations page

The events you monitor during test execution are defined in the
Configurations page of the Test Editor. On this page you also specify, which
emulators to use as well as the details of the emulation (manual or
programmatic). Figure 6-15 shows a sample Configurations page.

Figure 6-15 Test Configurations page

140 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Using the Add and Remove options, you can add and remove emulators as
well as monitors.

Finally a brief test strategy for testing your component:

– First test your component with all imported interfaces emulated.

– Once you core component logic is working to your satisfaction, remove the
emulators and thus add the life services one by one.

– Before running a component test with a life external service, run a test of
the service itself, to validate if the implementation is up and running and
working without failure.

6.5 Technical information

The IBM WebSphere Integration Developer is supported on a number of
hardware, software and operating system platforms. The packaging include the
IBM Rational Software Development Platform and three components that run on
the platform to provide a complete development environment.

6.5.1 Packaging

The WebSphere Integration Developer install image contains four major
components:

� The IBM Rational Software Development Platform

The IBM Rational Software Development Platform is an Eclipse based
common development environment that is shared by several products,
including:

– Rational Web Developer

– Rational Application Developer

– Rational Software Architect

– Rational Software Modeler

– Rational Functional Tester

– Rational Performance Tester

– WebSphere Integration Developer

If you install any of these products, the Rational Software Development
Platform is automatically installed as part of the product. If you have more
than one of the Rational Software Development Platform products installed,
the development platform is installed only once. All of these products have
the same user interface, called a workbench, and each product adds

 Chapter 6. IBM WebSphere Integration Developer 141

functionality to the workbench by contributing plug-ins. A plug-in is a software
module that adds function to an existing program or application.

� WebSphere Integration Developer

The Eclipse 3.2 based business integration development environment.

� WebSphere Process Server

An integrated version of the process server. It provides the BPEL runtime
environment and enables testing and debugging of the developed processes.
You will find more details on this product in 8.9, “WebSphere Process Server”
on page 201.

� WebSphere Enterprise Service Bus

Similar to the BPEL runtime environment, this is an integrated version of the
WebSphere Enterprise Bus that provides the runtime environment for
mediation flows. It enables testing and debugging of flows. For further details
refer to 8.8, “WebSphere Enterprise Service Bus” on page 199.

6.5.2 Supported platforms

WebSphere Integration Developer is supported in the following environments:

Operating systems
� Windows 2000

– Windows 2000 Advanced Server with SP3 and SP4
– Windows 2000 Server with SP3 and SP4
– Windows 2000 Professional with SP3 and SP4

� Windows 2003

– Windows Server 2003 Enterprise Edition
– Windows Server 2003 Standard Edition

Important: WebSphere Integration Developer 6.0.1 is compatible only with
products based on Rational Software Development Platform 6.0.1 (for
example, Rational Application Developer 6.0.1). If a different version of
Rational Application Developer is detected during the installation of
WebSphere Integration Developer 6.0.1, you are required to either
upgrade Rational Application Developer to 6.0.1 (available at
http://www.ibm.com/support) or uninstall your Rational Application
Developer so that WebSphere Integration Developer 6.0.1 can be installed
successfully.

142 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://www.ibm.com/support

� Windows XP

– Windows XP Professional with SP1 and SP2

� Linux

– Red Hat Enterprise Linux 3.0 WS Update 2
– SuSE Linux Enterprise Server 9

Hardware requirements
� Intel Pentium III 1 GHz processor minimum (Higher is recommended).

� 1 GB RAM minimum (1 to 2 GB RAM is recommended).

� Disk space:

– To install the full WebSphere Integration Developer, you will require 5.5
GB of disk space.

– If your file system is FAT32 instead of NTFS, more space will be required.

– You will require 1 GB in the TEMP directory.

� Minimum display resolution is 1024 x 768 minimum (1280 x 1024
recommended).

Note: Disk space requirements can be reduced if optional features and
run-time environments are not installed.

 Chapter 6. IBM WebSphere Integration Developer 143

144 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 7. IBM Telecom Web Services
Server Toolkit

This chapter provides an introductory overview of the IBM Telecom Web
Services Server Toolkit. The toolkit is a set of additional resources you install in
the IBM WebSphere Integration Developer for development of IMS flows.

This chapter contains the following:

� Introduction

� The IBM Telecom Web Services Server Toolkit

7

© Copyright IBM Corp. 2007. All rights reserved. 145

7.1 Introduction

The Telecom Web Services Server (TWSS) is one of the major components of
the IBM WebSphere Platform for Telecom. It enables the exposure of network
and service capabilities through language and technology independent high-level
Web service interfaces. The Web service interfaces can be accessed through
SIP or Diameter, PSTN functionality through a Parlay or OSA gateway, direct
connect access to network protocols, or custom integrated services.

TWSS consists of the following:

� Telecom Web Services service implementations

Telecom Web Services service implementations consists of several reusable
components that are deployed atop the WebSphere Application Server. The
components provide high-level service interfaces and the implementations
that expose network services for third-party access as Web service
interfaces.

� Telecom Web Services Access Gateway

Telecom Web Services Access Gateway provides policy-driven traffic
monitoring, message capture, authorization, and management capabilities. It
acts as an intermediary between clients and service end points, by enforcing
set policies on all Web service requests and responses that pass through.

Telecom Web Services Access Gateway extends WebSphere ESB by adding
policy-driven processing elements, and includes a number of components
called mediation primitives that can be assembled into customized message
process flows.

The mediation primitive interface and programming model provide the points
for extensibility and for creation of custom functions. You may choose to use
the flows or customize them using WID.

� Service Policy Manager

Service Policy Manager provides storage capability, access mechanism and
administration interfaces for definition, data administration and access to
service policies. Using the Service Policy Manager can define requesters and
services and attach policies to each. You can also define subscriptions which
associate services to requesters.

Note: You can get more information about Telecom Web Services Server
from TWSS Information Center at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r1/index.jsp?top
ic=/com.ibm.twss.intro.doc/esb_extensions_c.html

146 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r1/index.jsp?topic=/com.ibm.twss.intro.doc/esb_extensions_c.html

7.1.1 Mediation services

Mediation is a new function of the Enterprise Service Bus that allows for the
processing of messages between service requesters and service providers.
Mediation service applications are implemented using mediation modules which
intercept and modify messages that are passed between requesters and
providers. Mediation modules contain mediation flows which provide the logic
that processes the messages.

Figure 7-1 Mediation application service

Mediation flows are created and maintained using the Mediation Flow editor. A
flow consist of a series of processing steps which are executed in sequence.
Using the Mediation Flow editor you define the end nodes of the flow based on
the operation connections or source operation. You then add mediation
primitives which will be executed in sequence between the end nodes to create
request and response flows that provide the processing logic.

Mediation primitives receive messages, process them and propagate the
processed messages to the next primitive or node in the flow. Ready-made
mediation primitives are available from the Mediation Flow editor palette. You
can create custom mediation primitives which provide custom functions not
provided by the custom mediation primitives.

Bus

Mediation Flow

Mediation Module

Requests

Responses

Se
rv

ic
e r

eq
ue

st
er Service provider

Requests

Responses

Mediation
primitive

Mediation
primitive

 Chapter 7. IBM Telecom Web Services Server Toolkit 147

7.1.2 TWSS Mediation primitives

Telecom Web Services Access Gateway includes a number of mediation
primitives. The mediation primitives are divided into two sets:

� Mandatory mediation primitives

These mediation primitives form the base of Telecom Web Services Access
Gateway configuration and flow. They provide base services that support
add-on mediation primitive function.

– Transaction recorder mediation primitive

The transaction recorder mediation primitive records information about the
transaction within a table that is typically referenced by other mediation
primitives.

– Policy/Subscription mediation primitive

The policy/subscription mediation primitive retrieves policy data based on
the requester, service, and operation being called. The data is used as
decision parameter in the mediation primitive’s execution.

– Service invocation mediation primitive

The Service Invocation mediation primitive extracts the appropriate
endpoint from the message and prepares the message further for dynamic
service invocation which occurs at the next step.

� Optional mediation primitives

The following components are optional plug-ins and are used by the default
Telecom Web Services Access Gateway flow:

– Network statistics mediation primitive

Records message entry and exit information stores the results in a
database for use by network operations

Note: For more information about how to configure and develop mediation
primitives, see the IBM Redbook Getting started with WebSphere Enterprise
Service Bus V6, SG24-7212, at:

http://www.redbooks.ibm.com/abstracts/sg247212.html?Open

Also see the IBM WebSphere Developer Technical Journal article, “A practical
introduction to message mediation - Part 1”, for the basics of message
mediation at:

http://www-128.ibm.com/developerworks/websphere/techjournal/0504_mur
phy/0504_murphy.html

148 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://www.redbooks.ibm.com/abstracts/sg247212.html?Open
http://www-128.ibm.com/developerworks/websphere/techjournal/0504_murphy/0504_murphy.html

– Service authorization mediation primitive

Provides fine-grained authorization for Web service operations.

– SLA enforcement mediation primitive

Measures the system use by requestor to enforce policy-driven service
level agreements.

– Group Resolution mediation primitive (Parlay X-specific)

This mediation primitive is used for Parlay X service implementations that
can accept group URIs within a list of targets for a given operation. The
group resolution mediation primitive expands and replaces group URIs
with their member URIs. This mediation primitive is the only optional
mediation primitive in the default mediation flow, and is only invoked if
group information exists.

– CEI event emitter mediation primitive

Used by the Fault and Alarm common component to emit a common base
event (CBE). By emitting CBEs, the fault information can be picked up by
external security or monitoring systems.

7.1.3 TWSS default message flow

Telecom Web Services Access Gateway provides a default flow implementation.
The default flow is a model of a typical message processing function by a service
provider to support accounting of requests, service/operation level authorization,
message capture for regulatory purposes, and traffic level enforcement. The
default flow is illustrated in Figure 7-2 on page 150, it shows the mediation
primitives wired into the mediation flow.

 Chapter 7. IBM Telecom Web Services Server Toolkit 149

Figure 7-2 TWSS default message flow

7.2 The IBM Telecom Web Services Server Toolkit

The IBM WebSphere Telecom Web Services Server Toolkit consist of TWSS
plug-in and ESB Mediation Flows which you install in WebSphere Integration
Developer (WID).

Using the toolkit in WID, you can create custom mediation primitives that can be
made available in the WID tools palette, assemble flows by dragging and
dropping mediation primitives into the Mediation Flow editor and wiring them
together and can also customize existing flows using mediation primitives.

A.5, “Installing the Telecom Web Services Server plug-in” on page 524 describes
how to install the IBM WebSphere Telecom Web Services Server Toolkit in WID
to setup your development environment.

SCA Export
Invocation

Transaction
Recorder

Mediation primitive

Policy &
Subscription

Mediation primitive

Network
Statistics

Mediation primitive

Message
Interception

Mediation primitive

Service
Authorization

Mediation primitive

Parlay X
Service w/ Lists

w/ Groups?

Group Resolution
Mediation primitive
(Parlay X specific)

SLA Cluster
Enforcement

Mediation primitive

Service
Invocation

Mediation primitive

Network
Statistics

Mediation primitive

Message
Interception

Mediation primitive

Response for
SCA Export

No

Yes

Request SMO

Request SMO

150 Developing SIP and IP Multimedia Subsystem (IMS) Applications

7.2.1 Importing TWSS mediation flows

Having installed the TWSS plug-in IBM WebSphere Telecom Web Services
Server Toolkit (TWSS plug-in and ESB Mediation Flows), you need to import the
mediation flows you want to work with inside WID. We are going to load the Third
Party Call Control flow as an example.

1. To install the Third Party Call Control flow, first start WID from the command
line with the clean option.

2. Position yourself in the root directory of your WID installation and type:
wid.exe -clean

3. Once WID is started, it may take quite a while during this cleaning process,
even on a powerful workstation (ensure the CPU activity is still going on).

4. Now we are going to import PX_ESB_TPC_FLOW.zip that we copied in
<WID_install_Root>\runtimes\bi_v6\TWSS\ESB during the installation
process (see A.5, “Installing the Telecom Web Services Server plug-in” on
page 524).

5. Click File → Import Project Interchange, select PX_ESB_TPC_FLOW.zip and
click Open.

Note: Third Party Call Control Web Service is used in our sample IMS
application “Find Help” in Chapter 12, “Implementing the IMS sample service”
on page 341.

 Chapter 7. IBM Telecom Web Services Server Toolkit 151

Figure 7-3 Import Parlay X Mediation Flow

6. In the next window, check the box for the selected flow and click Finish.

152 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 7-4 Select 3 Party Call Control flow

7. You can now expand the PX_ESB_TPC_FLOW folder as well as the Mediation
Logic folder.

8. Double-click PX_ESB_TPC_FLOW.

9. In the Mediation Flow Editor that appears on the right, resize the top and
bottom panes to approximately same size.

10.Click the makeCall operation, the first operation in ThirdPartyCall interface
box.

11.The panes should look like the image in Figure 7-5 on page 154.

 Chapter 7. IBM Telecom Web Services Server Toolkit 153

Figure 7-5 Third Party Call Control flow in the Mediation Flow editor

7.2.2 Working with TWSS mediation flows

With the mediation flow loaded you are ready to start working with it.

� You start by double-clicking the title tab for the Mediation Flow Editor
window to get an enlarged view of the flow.

Note: You can observe that the mediation flow has a similar structure as
the default TWSS default flow in Figure 7-2 on page 150.

You can also observe that the TWSS Toolkit mediation primitives are
available for addition in the flow.

154 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 7-6 Third Party Call Mediation Flow

� Expand the bottom pane of the window where the properties of the selected
object is displayed.

� Select TransactionRecorder1

� The Description and Details in the Properties pane should appear as in
Figure 7-7 on page 156 and Figure 7-8 on page 156.

 Chapter 7. IBM Telecom Web Services Server Toolkit 155

Figure 7-7 Description of TransactionRecorder1 mediator

Figure 7-8 Data source detail of TransactionRecorder1 mediator

You can wire the mediation primitives together by clicking the out connection of
the source node and connecting it to the destination. Figure 7-9 on page 157

Note: It is also possible to see information similar to the one provided in
Properties window by positioning the cursor above the TransactionRecorder1
mediation box. By having the cursor hover over mediation primitives in the
editor, a pop-up will display information about the mediation.

156 Developing SIP and IP Multimedia Subsystem (IMS) Applications

shows the illustration of wiring TransactionRecorder1 to PolicySubscription1.
It also shows information in the Terminal tab of the Property pane.

Figure 7-9 Wiring TransactionRecorder1 to PolicySubscription1

You can use the editor to modify this mediation flow or any other mediation flow
by adding new mediation primitives and rewiring the connections to change the
flows. In 12.3, “BPEL development” on page 361 you can find the sample IMS
application “Find Help” which shows how to modify mediation flows.

 Chapter 7. IBM Telecom Web Services Server Toolkit 157

158 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 8. Introduction to the IBM
service execution
environment

The IBM IMS solution focuses on the service development, deployment and
execution environments. In this chapter we introduce the converged service
execution environment where the services you develop using the different
toolkits that are described in this redbook will run.

This chapter contains the following:

� Overview of the IBM IMS solution

� The IBM WebSphere Application Server

� WebSphere IMS Connector

� WebSphere Presence Server

� Telecom Web Services Server

� WebSphere Enterprise Service Bus

� WebSphere Process Server

8

© Copyright IBM Corp. 2007. All rights reserved. 159

8.1 Overview of the IBM IMS solution

In 2.2.4, “Functional planes” on page 36 we identified the functional planes of the
3GPP architecture. The planes include:

� The transport plane

It provides access network control for devices attached to the network.

� The control plane

The control plane provides the traffic routing capabilities for the IMS network.
It directs traffic towards the service plane for the invocation of services and
towards the transport plane to establish connections and direct session
resource usage.

� The service plane

This plane contains the application platforms that host service logic and
provide integration between IMS and non-IMS services.

� The management domain

The management domain provides supporting services to the different
planes, including Operational Support Systems (OSS), Business Support
Systems (BSS), Systems Management Services (SMS) capabilities.

� The service creation domain

The service creation domain populates the service plane and appropriate
systems within the management domain with the service logic and
configuration data required to operate and manage services.

The IMS logical layers define the typical infrastructure on which solutions are
deployed. The IBM IMS solution architecture consists of full life cycle service
delivery environments that focus on the service plane, service creation and
management domains.

160 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 8-1 IMS service delivery environment

The IBM IP Multimedia Subsystem offering includes integrated hardware and
software components that provide a flexible, high-performance IMS-compliant
service delivery platform. The platform includes:

� Service development environment

The IBM Unified Service Creation Environment provides the development
platform and processes that decreases time-to-market between the
conception of a user-service and its deployment, possibly involving multiple
service execution environments.

� Service deployment environment

Deploys the user-services on their execution environments. It provides
capabilities for testing and prototyping user-services before deployment.

TRANSPORT PLANENetwork

AA
Application Integration and Process orchestration

(entrusted)
3 rd party

SERVICES PLANE

TRANSPORT PLANE

CONTROL PLANE

Services
M

anagem
ent

Legacy
Apps

AA
Application Integration and Process orchestration

ISVs
Custom
3rd Parties

A
pp

lic
at

io
n

1
Ap

pl
ic

at
io

n
1

A
pp

lic
at

io
n

2
Ap

pl
ic

at
io

n
2

Ap
pl

ic
at

io
n

N
A

pp
lic

at
io

n
N

D
evice

Service C
om

position

HSS
HLR

Legacy
IN

NGN

IM SSF

JAIN
SLEE

AS
JSR
116
AS

J2EE
AS

IMS
Enablers

Orchestration (including charging)

WAS Service
Execution

Environment

 Chapter 8. Introduction to the IBM service execution environment 161

� Service delivery environment

The service delivery environment consists of middleware and hardware
systems for hosting and managing converged services combining voice,
video and data over both fixed and mobile networks and leveraging
service-oriented architecture (SOA).The service delivery environment itself
consists of four sub environments which include service execution, networks,
user devices, and service management.

8.1.1 The service execution environment

The IBM service execution environment is built on the latest release of IBM
WebSphere Application Server, which has deeply integrated SIP technology to
deliver a truly converged HTTP/SIP service execution platform for next
generation services. It provides full support for JSR116 and other pertinent
RFCs. The service execution environment also delivers prebuilt IMS-compliant
service enablers that include Presence, Group List Management, Diameter and
IMS Session Control (ISC) interfaces, as well as Parlay X interfaces for
security-rich, policy-based third-party access to network elements.

162 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 8-2 The IBM IMS solution overview

The fully converged SIP/HTTP environment is part of the IBM next generation
service platform. It executes SIP-based, IMS services and non-IMS services and
delivers the same services to both wireline and mobile networks.

Services can be built from standard infrastructure such as JSR 116 SIP Servlet
or using other modular services enablers as illustrated in Figure 8-3 on
page 164.

IMS AS

Applications

Tooling

Presence
Server

Group List
Server

IMS Network

ESB+ SIP Diameter XCAP

IMS Proxies Media
Platforms

Network
Subscriptions

IMS Control Panel, subscription, or third-party elements
IBM WebSphere based solution elements
IBM Rational-based solution elements

Web Services VoIP

 Chapter 8. Introduction to the IBM service execution environment 163

Figure 8-3 IBM IMS service execution environment

IBM delivers the following modular service enablers for the development and
delivery of next generation services:

� IBM WebSphere IMS Connector

It enables applications running on WebSphere Application Server to
communicate with IMS core elements like the Call/Session Control Function
(CSCF) and Home Subscriber Servers (HSS), as well as billing systems. It
includes IMS Service Control (ISC) and Diameter client interfaces.

� IBM WebSphere Presence Server

It also includes a Group List Server. The presence server delivers the ability
to collect, manage and distribute real-time information about subscriber
access, availability and willingness to communicate across applications and
environments and to create and manage application-independent,
network-stored groups.

Group List
Server

WebSphereWebSphere ApplicationApplication ServerServer V6.1V6.1

Service execution platform (converged SIP/HTTP)Service execution platform (converged SIP/HTTP)

IMS applications and services IMS applications and services

IMS Connector
(Diameter, ISC,

…)

Presence
Server

Telecom Web
Services Server

IBM service enablers Partner provided

164 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� IBM WebSphere Telecom Web Services Server

It delivers a security enhanced, standards-based Web Services gateway for
third-party access to network capabilities like presence and call control.

� The WebSphere Enterprise Service Bus and WebSphere Process Server

The IBM IMS solution integrates services by making use of service-oriented
architecture (SOA). The WebSphere Enterprise Service Bus and WebSphere
Process Server provide the runtime infrastructure SOA.

The modular service enablers are described in more detail in this chapter.

8.2 The IBM WebSphere Application Server

WebSphere Application Server V6.1 is the foundation of the IBM WebSphere
software platform, and a key building block for service-oriented architecture
(SOA). As a leading J2EE 1.4 and Web Services application platform,
WebSphere Application Server V6.1 delivers a high performance transaction
engine you can use to build, run, integrate, and manage dynamic applications.
WebSphere Application Server V6.1 includes a number of new and enhanced
features. The most significant feature is the implementation of JSR 116, which
standardizes servlets that consume and produce SIP signaling interactions.

The highlights of the new features implemented in WebSphere Application
Server V6.1 include the following:

� JDK™ 5.0 innovations

IBM implements J2SE™ 5.0 specification as Java Development Kit 5.0. It
introduces significant improvements in programmer productivity, application
portability, and performance. IBM innovations in the Virtual Machine

Note: IBM is actively engaged in interoperability testing with major Network
Equipment Provider (NEP) partners. IBM is also working with its
telecommunication-related business partners on interoperability to ensure
complete IMS solutions including IMS services plane, control plane elements
and value-added services.

Note: The following resources provide an overview of the IBM WebSphere
Application Server V6.1 and J2EE the Java based programming model for
enterprise applications:

� Experience J2EE! Using WebSphere Application Server V6.1, SG24-7297

� WebSphere Application Server V6.1: Technical Overview, REDP-4191

 Chapter 8. Introduction to the IBM service execution environment 165

enhances modularity, profiling, debugging, serviceability, and efficiencies
gained through compile and run-time performance optimizations.

� New automation tools

WebSphere Application Server V6.1 provides Application Server Toolkit a
full-scale Integrated Development Environment. It offers features such as
color-coded source display, command completion, configuration navigation,
and syntax checking.

� IBM Installation Factory for WebSphere Application Server V6.1

Uses self-managing autonomic technology to make WebSphere Application
Server installation and deployment easy, reliable and repeatable. By
streamlining the up-and-running process to just one simple step. New in this
release, IBM Installation Factory for WebSphere Application Server V6.1 now
allow you to pre-package appropriate service stream levels and to include
applications and their configurations. You can now also generate
cross-platform install packages, saving you time that can be used to focus on
real business issues.

� Tight integration with IBM Rational tools

Provides a rich, easy-to-use development environment that deploys directly
to WebSphere Application Server V6.1. The next version of Rational
Application Developer is expected to bundle new Rational toolset and provide
tighter integration.

� Application Server Toolkit (AST) enhancements

The AST provides basic support for the creation of new applications targeting
WebSphere Application Server V6.1. This includes wizards and tools for
creating new Web applications, Web Services, portlets, and EJBs, as well as
annotation based programming support, new administration tools for the
creation and maintenance of wsadmin Jython files, and tools to edit
WebSphere-specific bindings and extensions. The AST also provides the
tools necessary to develop and export JSR 116 SIP Servlets, including
wizards to create SIP Servlets, a rich Deployment Descriptor Editor, and
import/export wizards to package and deploy SIP Servlets. Support is also
included for the rapid deployment feature, providing an easy mechanism to
deploy applications to a running V6.1 server. A comprehensive Unit Test
Environment is included, providing all function necessary to deploy and
debug applications on WebSphere Application Server V6.1. This support
includes a Unit Test Client Web application for easy testing of EJBs and Web
Services.

� Performance and high availability

J2SE Development Kit 5 enables WebSphere Application Server V6.1 to
deliver substantial performance improvements and to continue to drive

166 Developing SIP and IP Multimedia Subsystem (IMS) Applications

industry benchmarks. The proxy server has also been integrated for cache
off-loading, which improves application performance and scalability.

� Session Initiation Protocol (SIP) servlet support

SIP servlet support is integrated within WebSphere Application Server V6.1.
With the converged servlet engine, you can easily enable converged HTTP
and SIP interactions, providing portlets, HTTP servlets, and SIP Servlets.

� Powerful Web Services

WebSphere Application Server V6.1 delivers new Web Services standards to
more securely extend your reach to new environments. The latest
enhancements provide better application portability and control, as well as
performance improvements, due to faster parsing technology, SOAP/JMS
enhancements, and changes to SOAP with Attachments API for Java (SAAJ).

8.2.1 WebSphere Application Server SIP support

The WebSphere Application Server V6.1 implements SIP Servlet 1.0
specification. It includes a SIP stack and a SIP container implementing JSR 116.
The HTTP container and SIP container are converged and are able to share
session management, security, and other attributes. The integrated
implementation provides advantages for SIP application support in WebSphere
Application Server. With integrated implementation, applications that include SIP
Servlets, HTTP servlets, and portlets can seamlessly interact, regardless of the
protocol.

Note: The Network Deployment (ND) version of the WebSphere Application
Server product brings in clustering, proxy servers, Web servers, IP load
balancing, and an industry leading high availability service. The Extended
Deployment (XD) version includes advanced QoS, management, and
monitoring capabilities.

 Chapter 8. Introduction to the IBM service execution environment 167

Figure 8-4 Converged HTPP/SIP application session

SIP messages can be transported via UDP (User Datagram Protocol) or TCP
and therefore UDP support has been added for SIP. Traffic arriving via TCP will
be routed either to the SIP or HTTP component depending on the content of the
inbound message. Message are pre-processed before being passed to the
Servlet container for routing to the appropriate application(s).

HTTP Request
and Response

HTTP Servlet SIP Servlet

SIP Request SIP Response

HTTP Sessions SIP Sessions

Application Session

168 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 8-5 Converged container handling HTTP Servlets, Portlets, and SIP Servlets

Compared to a stand-alone SIP container, the converged container provides
several benefits including the following:

� Reduced latency between containers

SIP is a real-time protocol and a timely response to a SIP request is critical.
For a combined SIP and HTTP application, any latency between the HTTP
and SIP environments must be minimized. A converged SIP HTTP container
ensures that the latency between the environments is as optimal as possible.

� Single point of administration

There is a single point of administration for the SIP and HTTP containers,
instead of one administration console for SIP and another for HTTP. It is
possible to deploy, in one step, a SAR archive containing an HTTP and a SIP

Converged container

P
re

se
nc

e

M
es

sa
gi

ng

S
es

si
on

m
an

ag
er

O
th

er
s

Shared ports

WebSphere Application Server

HTTP SSL SIP

HTTP container
pre-processor

SIP container
pre-processor

TCP UDP

 Chapter 8. Introduction to the IBM service execution environment 169

Servlet. An administrator who is used to WebSphere Application Server, will
find it straight forward to administer SIP applications.

� JMX™ and command line support for configuration and administration

Similar to HTTP administration, SIP can utilize JMX (Java Management
Extensions) and command line configuration to administer the system. This
allows administrators and developers to automate processes in a common
environment for both SIP and HTTP.

� Access to service-oriented architecture

Integrated access to Web Services, Enterprise Service Bus and Service
Orchestration is provided. This allows new services to be created and
exposed via an Enterprise Service Bus.

Standards support
WebSphere Application Server V6.1 implements a number of industry wide
standards. The following SIP standards are supported in WebSphere Application
Server:

Table 8-1 Base SIP standard support

Several application level standards are not implemented in WebSphere
Application Server V6.1 however, it does not prevent the implementation nor the
compliance by applications running in the converged HTTP/SIP container. An
example is RFC 2976, where an application may add support for SIP INFO
method and the container will not prevent its use. The standards include but are
not limited to the following:

Standards
organization

Standard Title

IETF

RFC 3261 SIP core protocol

RFC 3262 Reliability of provisional responses in SIP

RFC 3265 SIP specific event notification

JCP

JSR 116 SIP Servlet APIs

170 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Table 8-2 Other supported SIP standards

SIP Proxy and high availability
The WebSphere Application Server V6.1 proxy server delivers a high
performance SIP proxy capability that can be used at the edge of the network to
route, load balance, and improve response times for SIP dialogs to back-end SIP
resources.

The SIP proxy design is based on the WebSphere Application Server HTTP
proxy architecture and can be considered a peer to the HTTP proxy. Both the SIP

Standards
organization

Document Title

IETF

RFC2976 SIP INFO method

RFC 3428 SIP extension for instant messaging

RFC 3455 Private header extensions to SIP

RFC 3327 Extension (Path) header field for registering
nonadjacent contacts

RFC 3725 Best current practices for third party call
control.

RFC 3856 SIP-Presence event package

RFC 3863 Presence information data format

RFC 3680 SIP-Event state publication

RFC 3903 SIP-Registration event package

draft-ietf-simple-
rpid

Rich Presence Information Data Format

draft-ietf-simple-
event-list

SIP - Subscription on collection of resources

draft-ietf-sipping-
uri-list-subscribe

SIP - Subscription on a list of URIs

Note: See WebSphere Application Server V6.1 compliance with industry SIP
standards at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.i
bm.websphere.zseries.doc/info/zseries/ae/rsip_refstandard.html

 Chapter 8. Introduction to the IBM service execution environment 171

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/rsip_refstandard.html

and the HTTP proxies are designed to run within the same WebSphere
Application Server proxy server and both rely on filter-based architecture for
message processing and routing.

The SIP proxy serves as the initial point of entry, after the firewall, for SIP
messages. You can use rules to configure which SIP proxy to route messages to
and to load balance clusters of SIP containers.

WebSphere Application Server V6.1 proxy uses the unified clustering framework
and high availability manager services of WebSphere Application Server
Network Deployment package to seamlessly monitor the health of the servers,
handle the workload, routing and to support the session affinity needs of the SIP
container.

The Proxy server can be fronted by a simple IP sprayer, such as the Load
Balancer component included in WebSphere Application Server Network
Deployment. If a Proxy Server fails, the affinity is to the container and not to the
proxy itself so there is one less potential failure along the message flow.

172 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 8-6 SIP and HTTP proxy and workload balancing

8.3 WebSphere IMS Connector

WebSphere IMS Connector adds IMS-specific interfaces to the WebSphere
Application Server V6.1 to deliver a full IMS standards-compliant SIP application
server. Coupled with the IMS-ready HTTP and SIP applications support in
WebSphere Application Server, WebSphere IMS Connector enable truly
converged IMS applications to be built and deployed on a single service
execution platform.

WebSphere IMS Connector adds two key IMS-compliant interface elements, as
defined by the 3rd Generation Partnership Project (3GPP) and Internet
Engineering Task Force (IETF) to the WebSphere Application Server platform.
These are:

WebSphereWebSphere ProxyProxy

SIPSIP
ListenersListeners

HTTPHTTP
ListenersListeners

HTTPHTTP
SessionSession

SIPSIP
SessionSession

Single converged containerSingle converged container

SIPSIP
ListenersListeners

HTTPHTTP
ListenersListeners

WebSphereWebSphere Application ServerApplication Server

Single converged containerSingle converged container

SIPSIP
ListenersListeners

HTTPHTTP
ListenersListeners

WebSphereWebSphere Application ServerApplication Server

Manages affinity at the application levelManages affinity at the application level

 Chapter 8. Introduction to the IBM service execution environment 173

� IMS Session Control (ISC) interface

ISC enables standards-based connectivity to Call/Session Control Functions
(CSCF) in the IMS control plane

� Diameter stack and interfaces

Support subscriber management and charging functions in accordance with
IMS standards

8.3.1 ISC interface

3GPP specifies a standard interface based on SIP for how the IMS Core plane
communicates and integrates with Application Servers in the IMS service plane.
This interface is called IMS Service Control (ISC).

Figure 8-7 ISC Interface

The ISC Interface is a bidirectional interface that uses SIP messaging. It is based
on IETF RFC 3261, which specifies the standardized SIP messages exchanged
between the CSCF residing in the IMS core and application servers.

The ISC interface is formally defined by 3GPP and 3GPP2 in the following
standards:

� 3GPP

3GPP TS 23.228 Technical Specification Group Services and System
Aspects; IP Multimedia Subsystem (IMS); Stage 2 (Release 6)

IMS SIPIMS SIP
Application Application

ServerServer

ISCISC

*(S) *(S) -- CSCFCSCF

TriggersTriggers

Initial SIP RequestInitial SIP Request SIP RequestSIP Request

Initial SIP

Initial SIP

R
equest

R
equest

S
IP

S

IP

R
equest

R
equest

174 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� 3GPP2

3GPP2 X.S0013-002 All-IP Core Network Multimedia Domain (MMD); IP
Multimedia Subsystem; Stage 2

The role of the ISC Interface with regards to the application server is to provide
service invocation and present SIP parameters to applications.

Service Invocation and Interaction
The service platform or device clients trigger initial SIP request at the Service
Proxy (Serving CSCF) located in the IMS Core. The CSCF proxies the service
request to corresponding application based on triggers. The application server
acts either as a user agent (originating or terminating), proxy server, or B2BUA
(back-to-back user agent). The application server may Record and Route SIP
requests to stay in the signaling path, and the CSCF maintains the states
between dialogs sent to or from applications.

Figure 8-8 Application Server acting as user agent, SIP proxy, or B2BUA

Application ServerApplication Server

SS--CSCFCSCF

Application ServerApplication Server

SS--CSCFCSCF

Application ServerApplication Server Application ServerApplication Server

SS--CSCFCSCF SS--CSCFCSCF

From: XFrom: X
To: YTo: Y
CallCall--ID: ZID: Z

From: XFrom: X
To: YTo: Y

CallCall--ID: ID:
ZZ

SIPSIP
legleg
#1#1

SIP leg #1SIP leg #1

Application Server acting as Application Server acting as
terminating UA, or redirect serverterminating UA, or redirect server

11

SIPSIP
legleg
#1#1

SIP leg #1SIP leg #1

From: XFrom: X
To: YTo: Y
CallCall--ID: ZID: Z

From: XFrom: X
To: YTo: Y
CallCall--ID: ZID: ZApplication Server Application Server

acting as originating UAacting as originating UA
22

SIPSIP
legleg
#1#1

SIPSIP
legleg
#1#1

SIPSIP
legleg
#1#1

SIPSIP
legleg
#2#2

SIP leg #1SIP leg #1 SIP leg #1SIP leg #1 SIP leg #1SIP leg #1 SIP leg #2SIP leg #2

From: XFrom: X
To: YTo: Y
CallCall--ID: ZID: Z

From: XFrom: X
To: YTo: Y

CallCall--ID: ZID: Z

From: XFrom: X
To: YTo: Y
CallCall--ID: ZID: Z

From: XFrom: X
To: YTo: Y
CallCall--ID: ZID: Z

Application Server Application Server
acting as SIP Proxyacting as SIP Proxy

33 Application Server acting as Application Server acting as
back to Back UA (B2BUA)back to Back UA (B2BUA)

44

From: PFrom: P
To: QTo: Q
CallCall--ID: RID: R

From: PFrom: P
To: QTo: Q
CallCall--ID: RID: RFrom: XFrom: X

To: YTo: Y
CallCall--ID: ZID: Z

From: XFrom: X
To: YTo: Y
CallCall--ID: ZID: Z

 Chapter 8. Introduction to the IBM service execution environment 175

Presentation of SIP Parameters
The ISC interface supports the Service Point Triggers (SPT) for SIP methods
such as REGISTER, INVITE, SUBSCRIBE, and MESSAGE. Data in the SPTs
include:

� Presence or absence of any header
� Content of any header
� Direction of the request
� Session description information (SDP)
� Priority

An Initial Filter Criteria defines the logical expression for manipulating SIP
message method and headers, thereby defining which service platform or
platforms are used, and in what order, based on information received by the
S-CSCF. Each Initial Filter Criteria is associated to a SIP URI (Application Server
URI) to which the request should be forwarded if a match occurs. So when the
CSCF receives a request, the iFCs are first evaluated (there can be several,
each has a different priority), then the request is forwarded to the appropriate
IMS Application Server, such as WebSphere Application Server. The Application
Server in the IMS service plane receives the request, applies the business logic
for the application, and appropriately routes the request.

Figure 8-9 ISC Interface

S-CSCF

SIPFilter Criteria

HSS

iFC

SIP interface

Service Platform Trigger Points

Service Logic

SIP/ISC
Sh

AS

SIPIncoming
SIP Request

S
P
T

176 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Based on the ISC interface, there are several ways in which the application
server is expected to interact with the CSCF, they include:

� Acting as a terminating user agent (UA)

� Acting as an originating user agent to originate traffic on behalf of a user

� Receiving requests

� Serving as a proxy function

� Acting as a third party call control application

3GPP defined a list of Private Headers (P-Headers) to allow for control
mechanisms, charging mechanisms, etc. As SIP requests/messages are
processed in the IMS control plane, these P-Headers are inserted and are made
available to the application server. The application server can then act on them,
enhance them and also provide information also using P-Headers.

The following P-Headers are visible only to the application server:

� P-Asserted-Identity (RFC3325)

Carries valid and authenticated public user identity from the IMS control plane
to the application server.

� P-Charging-Vector (RFC3455)

Carries charging correlation information from IMS control plane to the
application server.

� P-Charging-Function-Addresses (RFC3455)

Carries offline and online charging function addresses from the IMS control
plane to the application server.

The following P-Headers are visible to both the application server and the user
environment.

� P-Access-Network-Info (RFC3455)

Carries information of the access network from user environment to the IMS
control plane and from the IMS control plane to the application servers (visible
only to trusted application servers). Allows the user environment to provide
information related to the access network it is using (such as cell ID).

� P-Called-Party-ID (RFC3455)

Carries the target public user identity from the IMS control plane to the user
environment. Allows the terminating user environment to learn dialed public
user identity that triggered the call. This field may be seen at the application
server when the application server is the called party (such as the destination
of the session), but not in other scenarios (such as when the application

 Chapter 8. Introduction to the IBM service execution environment 177

server is just a proxy in the chain of proxies in the path towards a user
environment).

8.3.2 Diameter services

Diameter is an Authentication, Authorization and Accounting (AAA) protocol
developed by the IETF. Diameter was initially developed as a second generation
protocol to replace the RADIUS protocol, it has since evolved into both a AAA
protocol and a more general purpose protocol used to access database
information.

In the IMS architecture, Diameter has 3 different types of network nodes:

� Clients

Clients are the nodes that originate AAA requests.

� Servers

Servers handle those requests for a particular domain or realm.

� Agents

Provide relay, proxy or translation functions.

Diameter is a peer-to-peer protocol. In a typical Diameter transaction as
illustrated in Figure 8-10, the Diameter client sends requests to the Diameter
server, the server then queries the database and sends the response back to the
client. The server can also initiate transactions by sending unsolicited messages
to the client.

Figure 8-10 Diameter components

Note: IBM WebSphere IMS Service Control Interfaces Component (also
referred to as ISC Interfaces) is an integral part of WebSphere Application
Server Version 6.1. It is only licensed for use through the IBM WebSphere IP
Multimedia Subsystem Connector Version 6.1.0.

Diameter
Client TCP/

SCTP

Diameter
Server AAA

DB

Port
3868

178 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Diameter runs on connection oriented transports such as TCP and SCTP, and
security is provided through TLS (Transport Layer Security) or IPSec (Network
Layer security).

The Diameter protocol is highly scalable. Proxy, relay and redirect agents are
used to fan-out the network. Diameter clients are front ended by proxy agents, or
relay agents that dynamically relay Diameter requests to appropriate Diameter
Servers.

The Diameter protocol can limit the resources in the network by limiting the
number of connections between any two peers to a single connection.

Figure 8-11 Diameter components for scalability/reliability purpose

Diameter protocol is used to implement the following reference points between
an Application Server in the service plane and IMS components:

� Sh, and Dh

Are used between an application server and the HSS and/or the SLF, for user
data handling and subscription/notification,

� Rf

Is used for handling offline charging information to the CCF. Rf supports two
offline charging methods that use reply/request pairs:

– Session Charging

Configurable charging timer functions:

• Start - Starts an accounting session timer

• Interim - Resets the accounting session timer

Diameter
Client Diameter

Server
(Realm B)

Realm B
AAA
DB

TCP/
SCTP

Proxy
or Relay
Agent

Diameter
Server

(Realm A)

Realm A
AAA
DB

 Chapter 8. Introduction to the IBM service execution environment 179

• Stop - Stops the accounting timer and expires the session

– Event Charging

Accounting process in a single operation

� Ro

Is used for handling online charging

The Diameter Protocol can be used in two different service areas:

� Accounting Services

This provides the capability to send Accounting-Start, Accounting-Stop, and
Accounting-Interim messages as well as an Accounting Event notification to
the Accounting server. The Accounting-Start, Accounting-Interim, and
Accounting-Stop messages contain the necessary attributes to create Call
Data Records (CDRs) to document the services used by a subscriber.
Moreover on line charging allows to perform credit control before usage of
IMS resources.

� Subscriber Profile Services (IMS-Sh)

This service provides data contained in XML documents to handle the
following functions:

– Sh-Pull

To query information pertaining to a specific Subscriber or user

– Sh-Update

To update the information retained on the HSS for a specific Subscriber or
user

– Sh-Subs-Notif

To register for notifications when particular information is updated

– Sh-Notif

To inform the Application Server that the information specified by an
earlier Sh-Subs-Notif request has been updated

8.3.3 IBM WebSphere Diameter Enabler

IBM WebSphere IP Multimedia Subsystem Connector includes the IBM
WebSphere Diameter Enabler Component (Diameter Enabler). The Diameter

Note: A Web Services interface can be used to provide external access to the
Diameter services. This of course requires that the transactions are secure
and users authenticated.

180 Developing SIP and IP Multimedia Subsystem (IMS) Applications

enabler includes Web Services and a client which enable Diameter applications
to send and receive subscriber profile information and send accounting
information from the Home Subscriber Server (HSS) and to the Charging
Collection Function (CCF).

WebSphere Diameter Enabler includes the following:

� WebSphere Diameter Enabler base

The WebSphere Diameter Enabler acts as a Diameter gateway, receiving
and replying to Web service requests on the one side while sending and
receiving Diameter packets on the other. This eliminates the need for the IMS
Application Server application developer to use the Diameter protocol.

� Rf accounting Web Services

The Rf accounting Web Services provides an offline charging interface.

� Sh subscriber profile Web Services

The Sh subscriber profile Web Services provide access to subscriber profile
information.

Figure 8-12 Diameter Enabler Component

WebSphere Diameter Enabler provides application programming interfaces
(API) using Web Services to help developers rapidly develop and deploy

Note: Only IMS-Rf is currently supported, Ro is planned for future release.

WAS

Web
Container

Diameter
Sh, Rf
Appl

Diameter
Base

HSS,
CCF or

Simulator

Web
Services
Interface

Diameter
Protocol

 Chapter 8. Introduction to the IBM service execution environment 181

applications that access data from the Home Subscriber Server (HSS) and
update data for the Charging Collection Function.

The Web Services Description Language (WSDL) is included for Rf accounting
Web Services and Sh subscriber profile Web Services.

Each WSDL file describes the operations, parameters, and data types that
comprise the interfaces of the Rf accounting Web Services and Sh subscriber
profile Web Services that can be executed by other applications.

8.4 WebSphere Presence Server

The design of an IMS application is facilitated by the use of common service
enablers. Service enablers are key elements of IMS architecture they represent
generic and reusable building blocks. Two enablers that are essential for IMS
solutions are the Presence and Group List Management service enablers.

The IBM WebSphere Presence Server includes IBM WebSphere Presence
Server Component (WebSphere Presence Server) the service enabler for
Presence, and the IBM WebSphere Group List Server Component (WebSphere
Group List Server) the service enabler for Group List Management.

8.4.1 IBM WebSphere Presence Server Component

WebSphere Presence Server adheres to industry standards such as Session
Initiation Protocol (SIP) defined by IETF (Internet Engineering Task Force), and
the SIP extension SIMPLE (SIP Instant Messaging and Presence Leveraging
Extensions). WebSphere Presence Server processes information in PIDF
(Presence Information Data Format-RFC3863) and RPID (Rich Presence
Information Data Format-draft-ietf-simple-rpid) formats.

It deploys on the IBM WebSphere Application Server platform and utilizes the
SIP container in WebSphere Application Server. The WebSphere Presence
Server uses JDBC™ data access methods for easy integration with JDBC
compliant databases such as IBM DB2 Universal Database and Oracle®
Database.

WebSphere Presence Server includes the following IETF defined components:

� Presence server

The presence server acts as an agent or as a proxy. When acting as a
presence agent, it is aware of the presence information of presentities. When
it acts as a proxy, it sends SUBSCRIBE requests to other entities that acts as

182 Developing SIP and IP Multimedia Subsystem (IMS) Applications

presence agents. The presence server component also acts as the presence
agent for all SUBSCRIBE requests.

� Event state compositor

Is a User Agent Server (UAS) that processes PUBLISH requests from
presentities, and is responsible for compositing event state into a complete,
composite event state of a resource.

The Presence Server is made up of a collection of inter-working services and
utilities that provide a number of functions including the following:

� Publish-Subscribe-Notify service

The Publish-Subscribe-Notify (PSN) Server is responsible for collecting,
managing and distributing presence information. It implements the major
functionalities of the WebSphere Presence Server in accordance to the
following IETF standards, RFC3265, RFC3856, RFC3857, RFC3858,
RFC3903, and others still in the draft phase.

� Presence data storage service

The WebSphere Presence Server allows a presentity to publish a presence
document. The WebSphere Presence Server allow presentities to publish
presence documents. It stores the data until the document expires or deleted
by the presentity.

� Events service

The WebSphere Presence Server supports subscriptions for notifications to
changes in presence information. It receives SIP SUBSCRIBE requests,
verifies their compliance to SIP standards (presence of all MUST headers
and reasonable syntax of the request), and then creates a subscription on the
presence. The WebSphere Presence Server collects the presence
documents and sends NOTIFY messages to subscribers.

� Resource List service

The WebSphere Presence Server provides a service (Resource List Server)
that accepts subscriptions to resource lists and notifies the subscribers of the
presence state of all entities in the list. This occurs whether the presentities
are registered within or outside the resource list domain.

� Location (Contacts) service

The Location (Contact) Service is an abstract service that generates the
registration binding (associates the Address Of Record (AOR) with one or
more presence contacts) and stores the registration information in the
database. The WebSphere Presence Server associates an AOR with one or
more contact addresses received in the REGISTER method. This service
may be used by a SIP redirect or proxy server to obtain information about one
or more presentity's locations.

 Chapter 8. Introduction to the IBM service execution environment 183

8.4.2 The Presence Management enabler

The Presence Management enabler (PME) is an application that collects,
manages, and distributes real-time presence information to applications and
users on an as-needed basis. Presence Management enabler allows
applications to both publish presence information and to subscribe for
notifications to changes in presence information. When an application subscribes
to presence information, the Presence Management enabler will send
notifications to the application with the presence information.

The following actors are involved when using a Presence Server:

� Presentity

A Presence Entity is a resource that provides presence information to a
presence server.

� Watcher

An entity that requests presence information about resources (presentities). It
can be either:

– A subscriber

Subscribes to presence information of a resource and indicates interest to
be notified of subsequent status changes.

– A fetcher

Gets a one time notification of a requested resource information
(subscription with expire time zero).

Note: The WebSphere Presence Server is extensible, you can extend it by
creating the following:

� Services and utilities
� Types of presence information
� Sources of presence information

184 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 8-13 Overview of Presence Management enabler

8.5 IBM WebSphere Group List Server

The IBM WebSphere Group List Server (GLS) supports creation of
network-based groups, management of the groups, and the administration of
membership, privileges and attributes. Members of a group can be either a public
identity of a user or a URI that identifies a nested group. Group lists are
maintained at the network level, as a result, it can be used from different devices.
And because group lists are maintained separately from services, multiple
services can use the same group list.

The IBM GLS is a carrier-grade server that leverages scalability and high
availability features of IBM middleware product offerings including the IBM
WebSphere Application Server Network Deployment V6.1, the IBM Tivoli®
Directory Server Version 6.0 for storage of group list information and DB2
Universal Database (DB2 UDB) for persistence of Usage Records and system
configuration parameters.

Presentity Publish
Presence

Server Subscriber

Notify

Subscribe

Fetcher

Fetch

Text, voice

Buddy list

Accepts, stores
and distributes

Presence
information

 Chapter 8. Introduction to the IBM service execution environment 185

The Group List Server performs a number of functions including the following:

� Provides the common repository for group definitions and lists.

� Makes lists available to devices, applications and services.

� Manages the authorization and permissions for accessing group lists.

� Enables updating of lists through standards-based interfaces.

� Provides subscription capabilities to alert applications and services of
changes to lists.

The IBM GLS consists of multiple components and supporting tools as illustrated
in Figure 8-14.

Figure 8-14 IBM GLS Architecture

The implementation of the IBM WebSphere Group List Server Component
supports command line and programatic interfaces:

LDAP

Custom
Repository

DB2
Usage

Records

Self administration
GUI

WebSphere Application Server

GLM
Cmd-Line
Interface

XCAP
Client

Utilities

XCAP
Mobile
Phone

Other XCAP
Resource

List
client

Shared XDM
Server

(XCAP
Resource-

List)

SIP
Subscribe/

Notify
Charging
Support
Utilities

Common
Group

List
Interface

A
dapter C

lient

LDAP
Adapter

Custom
Adapter

HTTP(s)

XCAP
over

HTTP(s)

186 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� Command line interface

Using the IBM WebSphere Group List Server Component command line
interface, you can bulk load members, (such as the members of a company
directory), delete members, and get membership information about a group.

� SIP interface

The SIP interface implements the group list subscribe and notify capability. It
provide subscribers notification when a group definition is modified in an
XCAP document that they own or that they have sufficient rights to view or
modify.

� XCAP interface

The Extensible Markup Language (XML) Configuration Access Protocol
(XCAP) server based command line interface provides the following
capabilities:

– Allows access to IBM WebSphere Group List Server Component by
mobile device or other applications which support an XCAP client

– Provides a Ut reference point interface into IBM WebSphere Group List
Server Component

– Can be used by administrators to create and maintain groups in a
bulk-load fashion

IBM WebSphere Group List Server Component also provides a set of XCAP
Client utility classes that enable easy development of XCAP client
applications, which communicate with the Group List Server through the
XCAP interface. Charging support utility classes enable the generation and
storage of usage records, which you can use to generate customer charging
records. The bulk load scripts use the XCAP Client utility classes to send
XML documents that describe the required group management operation
through the XCAP interface.

8.5.1 The role of Group List Management

The Group List Management Service Enabler allow users to create groups that
can be used for different services. The lists are applicable where public identities
are required, examples include instant messaging buddy lists, public or private
chat groups, buddy lists used to establish Push-to-talk over Cellular (PoC)
sessions.

 Chapter 8. Introduction to the IBM service execution environment 187

Groups have the following characteristics:

� Identifier

Each group has a globally unique, addressable group identifier that is used
when it is necessary to refer to a specific group, for example sending a
message to a group or subscribing to a group’s availability.

� Group information

Informative text that describe the type and usage of the group.

� Properties

Used to specify group visibility (who is authorized to see the group), and
group duration (expiration time, or by administrator)

� Service specific group information

Provides additional information about how the group should be used in the
context of a specific service.

A Group List Management enabler support secure use and access to group
content and notification of changes. It authenticates and authorizes users and
applications requesting access to group content. Notifications of group content
changes is provided only to authenticated and authorized users and applications.

It also provide offline usage logging to support various charging models such as
pay per transaction, volume based charging and indirect charging.

188 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 8-15 Group List Management Server enabler

Group List Management Server enabler

Administration
Interface

SIP
Subscribe/

Notify

Charging Support
Utilities

Common
Repository

User or
Application

User or
Application

Group configuration
and retrieval

Subscription and
notification of XCAP
document changes

HTTP(s)/XCAP

SIP

XDM Server
(XCAP

Resource-List)

Note: The Presence Management Enabler (PME) can take advantage of the
functions provided by the Group List Management Service Enabler (GLMSE).
For example the PME can make use of SIP events to subscribe and get
notifications when a subscribed document is changed in the GLMSE. And
PME can use XCAP protocol to retrieve documents stored in the GLMSE.

Draft-ietf-simple-event-list-07.txt describes a means for SIP users to send a
single subscribe request on a resource that represents a list of resources
(resource-list). The PME can utilize the interfaces to the GMSE to receive the
resource-list members, including updates on its members, and send
notifications including the presence information of all the group members.

 Chapter 8. Introduction to the IBM service execution environment 189

8.5.2 XDM/XCAP Interface

The XML Document Management XDM Specification (XDM_Spec) defines the
use of the common protocol XML Configuration Access Protocol (XCAP) by
which principals can store and manipulate their service-related data as XML
documents. It also defines how XCAP URI can be used to identify entire XML
documents, individual elements, or XML attributes that can be retrieved,
updated, or deleted.

The XML documents are stored on an XCAP server. Each XCAP resource on the
XCAP server has an associated application. If any resource is changed, the
XCAP server must be able to validate the content of each XCAP document that
is being modified. Further, the resource interdependencies and how changes to
one resource will effect other resources, has to be determined.

The application must provide the following information in order to use the XCAP
resources:

� An Application Unique ID (AUID), which uniquely identifies the application
usage

� An XML schema

� The XML document with a well defined semantic

� Default namespace binding, which maps the namespace prefixes to the
namespace URIs

� The MIME type of the document

� Naming conventions for XCAP client URIs

The XCAP URI
The XCAP URI (or URL) uniquely identifies XML documents, the type of XML
content and optionally, an XPATH which can identify a specific XML node which
can be stored or retrieved.

The general form of an XCAP URI is as follows:

<XCAP Root>/<AUID>/<Document Selector>/~~/<Node Selector>

Note: Detailed information about the XCAP specification can be found in the
IETF draft, Extensible Markup Language (XML) Formats for Representing
Resource Lists, at:

http://www.ietf.org/internet-drafts/draft-ietf-simple-xcap-list-usag
e-05.txt

190 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://www.ietf.org/internet-drafts/draft-ietf-simple-xcap-list-usage-05.txt

Where:

� <XCAP Root>

Identifies the HTTP request URL and context root.

Example: http://myhost.ibm.com:9080/services/

� <AUID>

Is the XCAP Application User IDentifier. This identifies the type of XML
document.

Examples: resource-lists or rls-services.

� <Document Selector>

Is the portion of the URI which identifies the specific document to be stored or
accessed. Documents are segregated into two types:

– "users"

The "users" type contains user documents which are created and
maintained by specific users. The form of the <Document Selector> for
documents contained in the users branch is "users/<XUI>/<Document
Name>", where <XUI> is the XCAP User Identifier, and <Document
Name> is the name of the document.

– "global"

The “global” type contains documents that ate global to the Group List
Management enabler. For the global branch the <Document Selector> for
documents contained in this branch is "global/<Document Name>", where
<Document Name> is the name of the document.

� <Node Selector>

Is an expression which can be used to identify a specific XLM element or
attribute which is to be updated or retrieved.

The following are two examples of the XCAP URI:

� User-specific Document
URL:http://myhost.ibm.com:9080/services/resource-lists/users/sip:joe
@foo.com/MyGroup.xml

� Global document

A node URL pointing to a list element with name “Accounting” within a global
document:
http://myhost.ibm.com:9080/services/resource-lists/global/WorkContac
ts.xml/~~/resource-lists/list[@name=“Accounting”]

 Chapter 8. Introduction to the IBM service execution environment 191

XCAP Usage
Group List Server uses the xcap-caps usage to retrieve the AUIDs that the XCAP
server implementation supports. Group List Server retrieves the XCAP
capabilities document by using the following XCAP URI:

� Resource-lists

Group List Server uses the resource-lists usage as its primary method of
managing group lists.

� RLS services

Group List Server uses the rls-services usage to map a user-defined SIP URI
that identifies a resource list. XCAP URI are used to access the resource list.
You can store individual rls-services documents using the following XCAP
Web address:

xcap_root/rls-services/users/XUI/index

Where:

– xcap_root

Is the root of the tree within the domain where all the XCAP documents
are stored

– XUI

Is the XCAP User Identifier

� org.openmobilealliance.xcap-directory

Group List Server uses the org.openmobilealliance.xcap-directory usage to
retrieve an XDM document directory XML file. Group List Server generates
the XDM document directory when it receives a GET request for the following
XCAP URI:

xcap_root/org.openmobilealliance.xcap-directory/users/XUI/directory.
xml

Where:

– xcap_root

Is the xcap_root_URL that specifies the hostname:port/context_root

– XUI

Is the XCAP User Identifier

� XCAP-CAPS

Group List Server uses the xcap-caps usage to retrieve the AUIDs that the
XCAP server implementation supports. Group List Server retrieves the XCAP
capabilities document by using the following XCAP URI:

xcap_root/xcap-caps/global/index

192 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Where:

– xcap_root

Is the xcap_root_URL that specifies the hostname:port/context_root of the
XCAP Server

– XUI

Is the XCAP User Identifier

8.6 Telecom Web Services Server

Telecom Web Services Server (TWSS) utilizes service-oriented architecture to
provide a platform whereby Service Providers can provide third parties a secure,
reliable, and policy driven access to telecommunication network capabilities,
such as messaging, location, presence, and call handling.

The TWSS physical architecture is illustrated in Figure 8-16 on page 194 it
consists of the following:

� Telecom Web Services Access Gateway which deploys on a WebSphere
ESB Version 6.0.2.7 and WebSphere Application Server Version 6.0.2.7

� Telecom Web Services implementations deploy on a WebSphere Application
Server 6.1

� Service Policy Manager deploys on a WebSphere Application Server 6.1. It
can be installed on the same physical server as the Telecom Web Services
implementations.

 Chapter 8. Introduction to the IBM service execution environment 193

Figure 8-16 WebSphere Telecom Web Services Server architecture

8.6.1 Telecom Web Services Access Gateway

The Access Gateway is the control point for network access. It is built on
WebSphere Enterprise Service Bus (ESB) which provides the flexibility for
constructing tailored Web Services message processing in accordance with the
service provider's network policies. It provides pluggable ESB components and
default message flows.

The Web Services message processing and flow can be modified in WebSphere
Integration Developer as Mediation flows, with the use of graphical programming
techniques. You can insert additional mediation primitives anywhere in the flow,
change the order of execution and so on.

A overview of the architecture for the Telecom Web Services Access Gateway is
illustrated in Figure 8-17 on page 195.

DB

S
IP

 Presence Server

Telecom Web Services
Access Gateway

WebSphere ESB

Transaction R
ecorder

A
uthorization

Policy Subscription/R
etrieval

C
apacity & SLA M

gm
t

G
roup R

esolution

N
etw

ork S
tatistics

M
essage Intercept

Parlay X Service Implementations

3
rdParty
C

all

Converged HTTP/SIP Container

Service
Logic

Common
Components

Term
inal

Status

Converged HTTP/SIP Container

Service
Logic

Common
Components

C
all

N
otification

Converged HTTP/SIP Container

Service
Logic

Common
Components

P
aym

ent

Converged HTTP/SIP Container

Service
Logic

Common
Components

Presence
Converged HTTP/SIP Container

Service
Logic

Common
Components

S-C
S

C
F

Client
Application

Web
Services

194 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 8-17 The Telecom Web Service Access Gateway architecture

Telecom Web Services Access Gateway provides a default flow implementation.
The default flow is illustrated in Figure 8-18 on page 196. The following
components are considered mandatory for a base Telecom Web Services
Access Gateway configuration and flow:

� Transaction recorder mediation primitive

� Policy/Subscription mediation primitive

� Service invocation mediation primitive

Telecom Web Services
Access Gateway

WebSphere ESB

Transaction R
ecorder

A
uthorization

Policy Subscription/R
etrieval

C
apacity & SLA M

gm
t

G
roup R

esolution

N
etw

ork S
tatistics

M
essage Intercept

Service
Tool

C
lient A

pplication

Service
Tool

Service
Tool

Service
Tool

Service
Tool

 Chapter 8. Introduction to the IBM service execution environment 195

Figure 8-18 TWSS Access Gateway default mediation flow logic

8.7 Telecom Web Services Server service
implementations

The Telecom Web Services Server supports service implementations that are
accessible through Web Services. The services range from SIP IMS enabled
services to SIP Parlay based services and direct connect protocol services.

SIP based services can directly access IMS components through WebSphere
Application Server IMS support. Parlay based services need a Parlay Connector
to communicate with a Parlay Gateway to access core network function. Direct
connect services need specific connectivity programming with various
telecommunication-specific protocols.

SCA Export
Invocation

Transaction
Recorder

Mediation primitive

Policy &
Subscription

Mediation primitive

Network
Statistics

Mediation primitive

Message
Interception

Mediation primitive

Service
Authorization

Mediation primitive

Parlay X
Service w/ Lists

w/ Groups?

Group Resolution
Mediation primitive
(Parlay X specific)

Network
Statistics

Mediation primitive

Message
Interception

Mediation primitive

Response for
SCA Export

Service
Invocation

Mediation primitive

No

Yes

Request SMO

Request SMO

SLA Cluster
Enforcement

Mediation primitive

196 Developing SIP and IP Multimedia Subsystem (IMS) Applications

To facilitate the rapid development of new service implementations, Telecom
Web Services Server service implementations include several reusable
components which provide common services intended to be shared by all
service implementations.

Web Services Implementation
The following Parlay X 2.1 are implemented out of the box with TWSS

� Third Party Call

It uses S-CSCF as a SIP proxy and enables third party client applications to
initiate a call from a network entity between two completely different users or
user agents

� Call notification

It uses S-CSCF as a SIP proxy and enables third party client applications to
get call event information from the network, either through looking up the
information or by asking for notifications. The type of events that can be
reported include:

– The called party is on the phone
– The called party does not answer the phone
– The called party is unreachable
– A call was attempted

� Payment

It enables third party client applications to send payment information to the
service provider that is determined by the service configuration information,
by enabling the application to charge an amount against a user account or
place money into a user account. The Web service then writes this charging
information to a local database, from which billing records are later generated
offline.

� Presence

It enables third party client applications to get information from the presence
server, either by looking up information or asking for notifications. Presence
service implementation allows client applications to use Web Services to
subscribe to a presentity, synchronously query the current presence
information for a presentity and to unsubscribe from a presentity.

Note: Parlay X implementations utilize OSA/Parlay gateways for connectivity
to telecommunication networks. Direct connection to data services network
elements through standard IP protocols such as SMSC via SMPP are planned
for future releases.

 Chapter 8. Introduction to the IBM service execution environment 197

� Terminal Status

Allows client applications to use Web Services with a presence server to
request the status of an IMS terminal (or terminals) and receive notification for
changes to the state of the terminal (or terminals). This service also supports
group-level operations.

Figure 8-19 Back-end Service Implementations

8.7.1 Common components

The Telecom Web Services service implementations includes reusable
components that provide functionality in the following areas and facilitate rapid
development:

DB

S
IP

 Presence Server

Telecom
 W

eb Services
A

ccess G
atew

ay

Parlay X Service Implementations

3
rdParty
C

all

Converged HTTP/SIP Container

Service
Logic

Common
Components

Term
inal

Status

Converged HTTP/SIP Container

Service
Logic

Common
Components

C
all

N
otification

Converged HTTP/SIP Container

Service
Logic

Common
Components

Paym
ent

Converged HTTP/SIP Container

Service
Logic

Common
Components

Presence

Converged HTTP/SIP Container

Service
Logic

Common
Components

S-C
SC

F

Client
Application

198 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� Admission Control

It controls incoming admission of Web Service traffic based on TWSS
platform capacity so that it does not exceed a configured rate for a given time
interval.

� Traffic Shaping

It controls the rate at which traffic can be directed towards an element in the
network. Each network element can be associated with a resource definition
defining the rate of traffic that can be directed towards the network element.
Traffic shaping will employ a token bucket-based mechanism to allow for
limiting traffic burst size and average rate.

� Parlay X Notification Delivery

It provides facilities for the delivery of notifications to the destination endpoint
through the front-end TWS B2B gateway.

� Faults and Alarms

When encountering error conditions, service implementations output fault
information and potentially emit an alarm for severe error conditions. Fault
and alarm information will both be emitted in Tivoli's common base event
(CBE) format supported by WebSphere Application Server and via JMX
management notifications.

� Service Usage Record

Each service implementation generates a service usage record that
describes how the service was used for accounting and billing purposes.
Service usage records are stored in relational table format such that service
usage records can be searched via SQL queries.

8.7.2 Service Policy Manager

Service Policy Manager provides administration interfaces that you can use. It
also includes storage capability and access mechanism to enable the definition
of requesters, services, as well as subscriptions that associate services with
requesters. It utilizes a Web interface and administrative Web Services to enable
interaction with the Service Policy Manager data store.

8.8 WebSphere Enterprise Service Bus

An Enterprise Service Bus ESB supports the concepts of SOA implementation
by:

� Decoupling the consumer's view of a service from the actual implementation
of the service

 Chapter 8. Introduction to the IBM service execution environment 199

� Decoupling technical aspects of service interactions

� Integrating and managing services

These concepts are achieved by replacing direct connections between service
consumers and providers with a hub and spoke architecture.

WebSphere Enterprise Service Bus is designed to provide the core functionality
of an ESB for a predominantly Web Services based environment. It is built on
open standards. Based on WebSphere Application Server Network Deployment,
it inherits the built-in messaging provider and quality of services. WebSphere
Enterprise Service Bus adds a mediation layer based on the Service Component
Architecture (SCA) programming model on top of this foundation to provide
intelligent connectivity.

SCA was developed to simplify the integration between business applications
and the development of new services. It defines an implementation of
service-oriented architecture (SOA). SCA separates application business logic
and the implementation details by providing a model that defines interfaces,
implementations, and references in a technology neutral way, enabling the
binding of these elements to any technology specific implementation.

Business data that is exchanged in an integrated application in WebSphere
Enterprise Service Bus is represented as business objects. Business objects are
based on Service Data Objects (SDOs), which is used to describe complex data
structures and provide a universal means for representing and accessing data.

WebSphere Enterprise Service Bus uses the Common Event Infrastructure (CEI)
to provide event management services, such as event generation, transmission,
persistence, and consumption.

WebSphere Enterprise Service Bus supports mediation of interactions between
endpoints beyond protocol transcoding. It enables handling of integration logic
processing in the ESB instead of in the interacting endpoints. Pre-built mediation
functions allow mediations to be visually composed.

The development tool for WebSphere Enterprise Service Bus is the WebSphere
Integration Developer introduced in Chapter 6, “IBM WebSphere Integration
Developer” on page 119.

For more information about WebSphere ESB V6, see the redbook Getting
Started with WebSphere Enterprise Service Bus V6 at:

http://www.redbooks.ibm.com/abstracts/sg247212.html?Open

200 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://www.redbooks.ibm.com/abstracts/sg247212.html?Open

8.9 WebSphere Process Server

WebSphere Process Server is built on top of WebSphere Enterprise Service Bus
and adds a business process runtime. It offers robust process automation,
advanced human workflow, business rules, application to application (A2A), and
B2B capabilities — all on a common, integrated SOA platform with native Java
Message Service (JMS) support.

The business process component in WebSphere Process Server implements a
WS-BPEL-compliant process engine. It represents the fourth release of a
business process choreography engine on top of the highly scalable WebSphere
Application Server. WS-BPEL defines a model and a grammar for describing the
behavior of a business process based on interactions between the process and
its partners.

Human task support expands the reach of WS-BPEL to include activities
requiring human interaction as steps in an automated business process.

WebSphere Process Server provides a business state machine component that
can be used to model heavily event-driven business process scenarios.

WebSphere Process Server contains a business rule component that provides
support for rule sets (If/Then rules) and decision tables.

For more information about WebSphere Process Server V6, see the Redpaper
Technical Overview of WebSphere Process Server and WebSphere Integration
Developer at:

http://www.redbooks.ibm.com/abstracts/redp4041.html

 Chapter 8. Introduction to the IBM service execution environment 201

http://www.redbooks.ibm.com/abstracts/redp4041.html

202 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Part 3 SIP applications

Part 3 provides the programming guide for developing SIP based converged
applications. It includes working examples that demonstrate use of IBM tools for
application development.

Part 3

© Copyright IBM Corp. 2007. All rights reserved. 203

204 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 9. Developing SIP applications

This chapter introduces the key elements of the SIP Servlet API Version 1.0 and
describes considerations for developing SIP Servlets to be deployed in the
WebSphere Application Server V6.1.

This chapter contains the following:

� Overview of SIP applications

� Elements of SIP applications

� Best practices

9

© Copyright IBM Corp. 2007. All rights reserved. 205

9.1 Overview of SIP applications

The SIP Servlet API specification defines a SIP Servlet as a Java-based
application component which is managed by a SIP Servlet container and
performs SIP signalling. In this section, we introduce these components and
provide an overview of their functionality.

9.1.1 SIP Servlet container

The SIP Servlet container is responsible for receiving and sending SIP
messages over the network. The servlet container chooses the SIP Servlet
methods, and the order in which the SIP Servlets will be invoked. The selection is
based on the contents of the received SIP messages and the set of policies in
effect at the container. The servlet container also authenticates and authorizes
requests prior to dispatching the requests to SIP Servlets.

Figure 9-1 shows the relationship between a SIP client, the SIP container and
the SIP Servlet.

Figure 9-1 SIP Servlet overview

Client SIP Container SIP Servlet Methods

SIP Message

Rules

Servlet

Create
Request()

Create
Response()

init()

service()

destroy()

doInvite()
doAck()

doOptions()
doCancel()

doRegister()
doPrack()
doInfo()

doNotify()
doMessage()

doSubscribe()

doProvisionalResponse()
doSuccessResponse()

doErrorResponse()
doRedirectResponse()

doRequest()

doResponse()

SIP Message

206 Developing SIP and IP Multimedia Subsystem (IMS) Applications

9.2 SIP Servlet

SIP Servlets are grouped together into applications which are deployed to SIP
Servlet containers using deployment descriptors.

SIP Servlets respond to SIP events, both requests and responses that are
dispatched by the SIP Servlet container. It uses a high level API to create new
SIP messages and to inspect received messages. The servlet container ensures
that only valid SIP messages that conform to the SIP protocol are created.

The deployment descriptor contains information about how to invoke servlets
and rules for mapping SIP messages. The servlet invocation information is used
by the container to invoke SIP Servlets within a SIP application. The mapping
rules specify how the servlet container should map SIP messages to SIP
Servlets and how the security should be enforced.

The SIP Servlet API is built on the generic servlet API, javax.servlet package.
It adds the javax.servlet.sip package which defines SIP specific elements.

9.2.1 Differences between SIP and HTTP Servlet

The SIP and HTTP Servlet programming models share many similarities.
However there are a number of important differences:

� Requests and responses

HTTP Servlets provide a single HTTP response as a result of receiving an
HTTP request. An HTTP Servlet overrides the service (HttpServletRequest
request, HttpServletResponse response) method of the HttpServlet class.
It is responsible for creating a response using the HttpServletResponse
object that is passed in the service method invocation.

In contrast, the receipt of a single SIP request by the SIP Servlet may result in
zero or more responses. SIP Servlets decouple the receipt of requests from
the generation of responses. They also incorporate the ability to initiate or
receive SIP requests and responses. Though a SIP Servlet may override the
service (SipServletRequest request, SipServletResponse response)
method, only one of the objects is populated by the SIP container, depending
on whether a SIP request or response is being delivered. The other object is
set to null. This allows a given request to be decoupled from the response,
and for a SIP Servlet to choose how to respond to the receipt of a given
message.

� Methods

The HTTP protocol defines a series of methods such as GET, POST and HEAD.
An HTTP Servlet may choose to override the implementation of the

 Chapter 9. Developing SIP applications 207

corresponding methods such as doGet (HttpServletRequest request,
HttpServletResponse response), which is invoked when a request
corresponding to the protocol method is received.

The SIP protocol defines a different set of methods which include INVITE,
CANCEL and BYE, and the SIP Servlet defines the corresponding set of
methods that may be overridden to handle these requests.

Because the generation of SIP responses are decoupled from the receipt of
requests, a SIP Servlet overrides methods such as doInvite
(SipServletRequest request) to handle requests for specific protocol
methods, and it uses doSuccessResponse (SipServletResponse response) to
handle responses for particular classes.

� Synchronicity

HTTP Servlets handle request messages synchronously, generating
responses that are sent to the Web browser before exiting the service
method. Should a HTTP servlet not create a response, the HTTP Servlet
container will create a default response and return it to the HTTP client.

SIP Servlets are not required to respond to every request. A SIP Servlet may
respond immediately to a request, or not at all. It can perform some other
operation such as forwarding the request to a proxy that will respond to the
request at a later point in time.

� Application composition

In response to an HTTP request, the HTTP Servlet container selects and
invokes just one HTTP Servlet which generates a single HTTP response. If it
is necessary to perform additional operations on the request or response,
then one or more HTTP Servlet filters are used to operate on the request flow.

SIP Servlets on the otherhand support invocation of multiple SIP Servlets.
Mapping rules specify one or more SIP Servlets that may be invoked for a
given request. Rules make use of different aspects of requests and boolean
logic to map requests to the appropriate SIP Servlet. This provides
significantly more flexibility when compared to HTTP Servlet filters.

� Session management

A HTTP client session is generally uniquely identified using a session
identifier contained in a session cookie or URL. A HttpServlet may store
server-side state using a HttpSession object and refer to this information
when a subsequent request from a client is received.

The SIP protocol defined sessions between User Agents as SIP dialogs. SIP
Servlets maintain state information in SIP dialogs through the SipSession
interface. The SIP Servlet may access previously stored information as it
processes requests and responses in a given dialog through the SipSession
interface.

208 Developing SIP and IP Multimedia Subsystem (IMS) Applications

9.2.2 Converged servlet

The converged servlet is an IBM extension to the functionality provided by the
SIP Servlet API. It facilitates the development of converged applications which
combine access through multiple interfaces, for example, it enables combination
of telephony and Web elements in a single integrated application where an
inbound SIP phone call can display the callers information on a Web page.

Converged servlets can receive and respond to HTTP requests as well as initiate
SIP requests while sharing context and session information with other SIP
Servlets deployed within the same application.

9.3 Elements of SIP applications

A SIP application is comprised of a number of different elements ranging from
requests and responses to events and sessions. The key elements are
presented here.

9.3.1 Receiving requests

SIP requests received by the container are dispatched to one or more
SipServlets based on the mapping rules defined in the sip.xml deployment
descriptor. These rules are described in 9.3.7, “Mapping requests to servlets” on
page 219.

Request handling methods
When a request is received by the container, it is dispatched to a Servlet, and the
SipServlet method corresponding to the SIP method of the request is invoked.
The mapping between SipServlet and SIP methods is shown in Table 9-1.

Table 9-1 SipServlet to SIP method mapping

SipServlet method SIP method

doInvite INVITE

doAck ACK

doOptions OPTIONS

doBye BYE

doCancel CANCEL

doRegister REGISTER

 Chapter 9. Developing SIP applications 209

An application that responds to SIP methods other than those listed in Table 9-2
on page 216 must implement the doRequest method which is invoked in response
to all SIP requests received by the SIP container.

Example 9-1 shows a simple SipServlet which responds to a SIP OPTIONS
request.

Example 9-1 Example OptionsSipServlet

public class OptionsSipServlet extends SipServlet {

protected void doOptions(SipServletRequest request) throws
ServletException, IOException {

SipServletResponse response = request.createResponse(200);
response.send();

}

}

9.3.2 Parsing messages

SipServletRequest and SipServletResponse implement the SipServletMessage
interface, which provides methods to access, parse and modify message
headers and contents.

doPrack PRACK

doSubscribe SUBSCRIBE

doNotify NOTIFY

doMessage MESSAGE

doInfo INFO

SipServlet method SIP method

210 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 9-2 Request-response hierarchy

String headers
The contents of a single header can be retrieved as a String using the
getHeader(String name) method. Where a header appears multiple times, this
method will return the contents of the first appearance of the header. The
contents of all headers can be retrieved using the getHeaders(String name)
method which returns a ListIterator with the contents of each of the headers.
The list of headers contained in the message can be obtained by using the
getHeaderNames() method which returns an Iterator containing the header
names.

Example 9-2 Parsing SIP headers

String expires = req.getHeader(“Expires”);
ListIterator it = req.getHeaders(“Contact”);
Iterator it = req.getHeaderNames();

Address headers
Several methods are available for obtaining addresses contained in the SIP
message headers. The address for a single header can be obtained by using the
getAddressHeader(String name) method. Similar to the handling of headers as
strings, getAddressHeader() method returns the address for the first appearance
of a header. getAddressHeaders(String name) method returns a ListIterator
of all addresses.

System headers
System headers are those headers that are managed by the container, and are
not available for direct manipulated by the application. These headers are the
Call-ID, From, To, CSeq, Via, Record-Route, Route and Contact headers when in
the context of a signalling session. For example, these headers can be set when
used in the context of a REGISTER request or response, and when responding

SipServletRequest SipServletResponse

SipServletMessage

ServletRequest ServletResponse

 Chapter 9. Developing SIP applications 211

with a redirection (3xx) or 485 Ambiguous response, but not in other
circumstances.

Message content
The SipServletMessage interface provides several methods for parsing message
content. The MIME type of the content is obtained using the getContentType()
method. The length of the content is obtained using the getContentLength()
method.

Contents are obtained by using the getContent() method which returns an
Object. The type of the object depends on the content type. If the message is of
type text/plain or any other text MIME type, a String is returned.

An application wishing to obtain the raw content without the overhead of parsing,
can do so by using the getRawContent() method which returns a byte[]. This is
useful for Back to Back User Agents and applications that want to copy the
contents of a message unchanged.

Transport information
The SipServletMessage interface provides a series of methods for obtaining
information about the transport channel that a message was received on.

The local address and port that a message was received on is available from the
getLocalAddr() and getLocalPort() methods, while the remote address and
port that a message was sent from is available from the getRemoteAddr() and
getRemotePort() methods.

The application may determine the transport that was used, for example UDP,
TCP or TLS using the getTransport() method.

The transport information delivered to the application refers to the transport
between the container and the previous SIP server. Hence, if the Stateless SIP
Proxy is deployed, an application using this information shall receive the
information on the transport between the Stateless SIP Proxy and WebSphere
Application Server.

9.3.3 Creating responses

A SIP Servlet can respond to a request that it received by using the
createResponse(int statusCode) method that is available from the SipMessage
interface.

SipServletResponse provides a set of constants for use as numeric constants for
response codes. For example, the constant SipServletResponse.SC_RINGING

212 Developing SIP and IP Multimedia Subsystem (IMS) Applications

can be used to indicate that the SIP endpoint is ringing in place of specifying the
corresponding numeric response code of 180.

Once created, the SipServletResponse can be modified prior to being sent.
Headers can be added using the addHeader(String name, String value) and
addAddressHeader(String name, String Address) methods. The message
content may also be specified using the setContent(Object object, String
mimeType) method.

To send the response, the send() method is invoked. The container is
responsible for any retransmission of any success (2xx) responses required by
the SIP protocol.

9.3.4 Creating requests

To create a SIP Request as a User Agent Client, the client first has to obtains a
SipFactory and then create a request.

Obtaining the SipFactory
In order to create an initial SIP request as a User Agent Client, the SIPFactory
interface is first obtained from an attribute named
javax.servlet.sip.SipFactory from a SIP Servlet’s ServletContext. The
SipServlet’s SIP_FACTORY field also contains a String with same value that may
be used to obtain this attribute. Example 9-3 shows code snippet that uses this
approach.

Example 9-3 Obtaining a SipFactory from the ServletContext

ServletContext context = getServletContext();
SipFactory sipFactory = (SipFactory)context.getAttribute(SIP_FACTORY);

Creating Initial Requests
The SipFactory provides several createRequest methods which can be used to
create an initial request. The parameters for createRequest are as follows:

� SipApplicationSession

The SipSession the request will belong to

� method

The SIP method for the request

� from

The contents of the From header

 Chapter 9. Developing SIP applications 213

� to

The contents of the To header

There are several option for specifying the From and To parameters:

� SipServletRequest createRequest(SipApplicationSession appSession,
String method, Address from, Address to);

� SipServletRequest createRequest(SipApplicationSession appSession,
String method, URI from, URI to);

� SipServletRequest createRequest(SipApplicationSession appSession,
String method, String from, String to) throws ServletException;

Once the SipServletRequest is created, it can be modified as required, and then
sent using the send() method.

Example 9-4 Creating and sending SipServletRequest from a SipFactory

URI from = sipFactory.createURI(“alice@example.com”);
URI to = sipFactory.createURI(“bob@example.com”);

SipServletRequest invite = createRequest(appSession,“INVITE”,from,to);
invite.setRequestURI(to);
invite.send();

Selecting the SipServlet to receive the response
When an initial SipServletRequest is created, the first SipServlet listed in the
SIP deployment descriptor is assigned to handle responses. To override this, a
handler can be assigned to the SipSession for a request. The sample code in
Example 9-5 shows how to set the handler for the session with the servlet-name
of ThirdPartyCallController.

Example 9-5 Specifying the handler for responses

SipServletRequest invite = createRequest(appSession,“INVITE”,from,to);
SipSession session = invite.getSession();

try {
session.setHandler(“ThirdPartyCallController”);

} catch (ServletException e) {
//handle mismatch between deployment descriptor and application

}

invite.setRequestURI(to);
invite.send();

214 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Example 9-6 shows how the <servlet-name> can refer to a particular
<servlet-class> in the SIP deployment descriptor.

Example 9-6 Setting <servlet-name> in the SIP deployment descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sip-app PUBLIC "-//Java Community Process//DTD SIP
Application 1.0//EN" "http://www.jcp.org/dtd/sip-app_1_0.dtd">
<sip-app>

<display-name>Third Party Call Controller Application</display-name>
<servlet>

<servlet-name>ThirdPartyCallController</servlet-name>
<display-name>Third Party Call Controller</display-name>
<servlet-class>com.itso.sg247255.CallController</servlet-class>

</servlet>
...

Creating Subsequent Requests
When a SipServlet is within a dialog, it may send subsequent requests using the
createRequest method on the SipSession that corresponds to the dialog

SipServletRequest createRequest (String method);

The container will create a SipServletRequest which meets the SIP protocol
requirements for subsequent requests within a dialog. The application may
modify the request further, it is then sent by invoking the send() method.

Sending CANCEL
A User Agent Client may need to cancel an INVITE request that is in progress.
The User Agent Client invokes createCancel() on the original INVITE
SipServletRequest. The SIP container is responsible for delaying the
transmission of the cancel until a 1xx response has been received.

Back to Back User Agents
In order to ease development for Back to Back User Agents, a SipServlet may
create a new SipServletRequest based on an existing SipServletRequest. The
method createRequest(SipServletRequest origRequest, boolean sameCallId)
may be used. This will create a new request which differs from the original
request in the following ways:

Tip: We recommend that a handler is explicitly set when an initial request is
created rather than relying on a particular SipServlet being listed first for an
application in the SIP deployment descriptor.

 Chapter 9. Developing SIP applications 215

� The Call-ID is set to a new Call-ID if requested by the sameCallID method
parameter

� The From header has a new tag selected by the container; and the To header
does not have a tag

� Record-Route and Via headers are not copied to the new request

� The Contact header is not copied unless the request is a REGISTER request

The container performs regular processing on the request such as adding the
necessary Via headers when sending the new request.

9.3.5 Receiving responses

The SIP container receives responses which it may dispatch to SIP Servlets for
handling.

Handling responses
When a SIP response is received by the SIP container, it selects the appropriate
SIP Servlet to invoke. Based on the code for the response, it dispatches the
response to one of the methods listed in Table 9-2.

Table 9-2 Response handling methods

An application that wishes to act on all SIP responses may override the
doResponse method which is invoked for all SIP responses received by the SIP
container.

Access to Headers, Message Content, and Transport Information are similarly
available as receiving of SIP requests.

Tip: This method provides the ability for a User Agent Client to respond to a
401 Unauthorized challenge while maintaining the Call-ID. This is useful for a
client which needs to use the same Call-ID for a subsequent request, such as
a client that is sending a registration request containing Authorization details.

Method Response

doProvisionalResponse 1xx provisional responses

doSuccessResponse 2xx success responses

doRedirectResponse 3xx redirection responses

doErrorResponse 4xx, 5xx, 6xx bad request, server failure or
global failure responses

216 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Sending ACK and CANCEL
The application is responsible for acknowledging all success (2xx) responses,
while the container is responsible for acknowledging all non-2xx responses.

For an application to acknowledge a response, an ACK is created by invoking
the createAck() method of the SipServletRequest. This can be modified further
prior to being sent using the send() method of the SipServletResponse.
Example 9-7 shows an example of acknowledging a final response.

Example 9-7 Acknowledging a success response

SipServletRequest request = response.getRequest();
request.createAck();
request.send();

9.3.6 Proxies

A common requirement for a SIP application is to proxy requests and responses.

Proxying Requests
In order to proxy a request, a SipServlet first obtains the Proxy object from the
SipServletRequest. At the point of creation for the Proxy object the container will
send a 100 Trying response unless the SipServlet has already sent a 1xx
response.

Once the Proxy object is obtained, the SipServlet can then invoke the
proxyTo(URI uri) method to proxy the request to the specified uri. If the request
is to be proxied to more than one destination, then the method proxyTo(List
listOfURIs) is used instead.

Example 9-8 shows a simple proxy servlet which receives a request and proxies
it to the Address of Record held in an internal store. If the Address of Record is
not known by the proxy, it returns a 404 Not Found response.

Example 9-8 SIP Servlet proxy example

public class LocalProxy extends javax.servlet.sip.SipServlet implements
javax.servlet.Servlet {

 protected void doRequest(SipServletRequest req) throws
ServletException, IOException {

Note: The 100 Trying response and any retransmissions received by the SIP
container are not dispatched to the SipServlet.

 Chapter 9. Developing SIP applications 217

Proxy proxy = req.getProxy();
 Address contactAddress = (Address)

RegistrarStore.getContactForAOR(req.getTo().getURI());
 if (contactAddress == null) {

 req.createResponse(404);
 req.send();

 } else {
 proxy.proxyTo(contactAddress.getURI());

 }
}

}
 }

Controlling Proxy Operation
There are a number of controls over how the proxy operations are performed,
they include the following:

� Record Route

By default an application proxying a request will not remain on the application
path. In order to see all subsequent requests in a dialog an application can
set recordRoute to true.

� Supervised

For a given transaction, the servlet will receive all responses by default.
Where an application does not need to take explicit action on responses, the
proxying of the responses received can be handled by the container without
invoking the servlet. This is specified by setting the supervised parameter of
the Proxy object to false.

� Parallel and sequential proxying

When a SIP Servlet proxies a request to more than one destination, it may do
so in parallel or sequentially. By default, proxying will be performed in parallel,
however this may be changed by setting the parallel parameter of the Proxy
object to false.

� Sequential search time-out

When performing sequential proxying, the container waits for a period of time
for a final response before it cancels the branch and moves on to proxy the
next destination in the list. A default value may be provided using the
<sequential-search-timeout> element of the SIP deployment descriptor. You
can override the default setting or set the timeout on individual proxy objects
using the sequentialSearchTimeout parameter of Proxy object.

218 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� Stateful proxying

By default, all proxying are stateful, however an application may perform
stateless proxying by setting the stateful parameter of the Proxy object to
true.

� Recursion

By default, the container will automatically follow any redirect (3xx) responses
received. Should an application not require this functionality, it can disabled it
by setting the recurse parameter of the Proxy object to false.

9.3.7 Mapping requests to servlets

The SIP deployment descriptor provides a flexible way to declare the mapping
between SIP requests and one or more SIP Servlets.

Mapping rules
The mapping rules specify the conditions under which servlets can be invoked.
The rules language defines an object model for SIP requests. The model
includes a number of types and associated properties. The Request object is the
starting point for rules matching and it has the properties shown in Table 9-3.

Table 9-3 Request properties

The URI scheme is represented as URI object and can be accessed using the
properties in Table 9-4 or Table 9-5 on page 220 depending on whether the URI
is SipURI or TelURI, respectively.

Table 9-4 SipURI properties (extends URI)

Property Description

method the request method

uri the request uri

from the From header Address

to the To header Address

Property Description

scheme either sip or sips

user user part of the uri

host host part of the uri

port port number of the uri

 Chapter 9. Developing SIP applications 219

Table 9-5 TelURI properties (extends URI)

When constructing a matching rule, several different conditions which include
operators and logical connectors are available. Table 9-6 shows the list of
available operators.

Table 9-6 Operators

Multiple rules may be combined using the boolean operators shown in Table 9-7.

Table 9-7 Connectors

The sample mapping rule in Example 9-9 on page 221 includes two individual
rules. The first rule tests the value of request.method for equality to
“INVITE”, and second rule will return true if the To header is a subdomain of

tel telephone number in the user part of the
uri

param.name value of named parameter within the uri

Property Description

scheme always tel

tel subscriber name

param.name value of named parameter within the uri

Condition Description

equal true if values are equal; false otherwise

exists true if variable is defined; false otherwise

contains true if variable contains the literal string;
false otherwise

subdomain-of true if the domain name or telephone
subscriber is a subdomain of a literal value

Condition Description

and true if all conditions are true

or true if any conditions are true

not true if the condition is false

Property Description

220 Developing SIP and IP Multimedia Subsystem (IMS) Applications

ibm.com®. If a request is received where both of these conditions are true, then
the CallController servlet will be invoked, subject to the ordering rules
described in “Application composition” on page 221.

Example 9-9 Mapping Example

<servlet-mapping>
<servlet-name>CallController</servlet-name>
<pattern>

<and>
<equal>

<var>request.method</var>
<value>INVITE</value>

</equal>
<subdomain-of>

<var>request.to.uri.host</var>
<value>ibm.com</value>

</subdomain-of>
</and>

</pattern>
</servlet-mapping>

Application composition
Application composition depends on the order of deployed applications and on
the order of mapping rules within the deployment descriptor of each application.
To ensure consistent behavior, the order in which servlets are invoked is
determined as follows:

� For an initial incoming request, the SIP container tries each potential rule in
the deployed application order, then in the order the rules are listed in an
application’s deployment descriptor. Upon finding the nth match, the container
then invokes the corresponding servlet.

� If the servlet needs to proxy the request, the container re-scans the rules
searching for additional matches. Upon finding the (n+1)th match, the
container invokes the corresponding servlet.

� Matching the request excludes any servlet in the same application as the
previously invoked servlet. No servlet will be invoked twice for the same SIP
request.

9.3.8 Sessions

SIP Servlets are stateless and contain no per SIP dialog or per SIP transaction
data. In order to allow a SIP Servlet to process multiple messages that are

 Chapter 9. Developing SIP applications 221

related, SIP Servlet provides the SipSession interface which represents a
point-to-point relationship between two user agents.

The SipApplicationSession links multiple of these point-to-point relationships to
allow them to be managed as a single application. For example, a SIP Servlet
may provide a service such as a third party call control application which involves
multiple user agents and an HTTP user interface. In this case, it is important to
have the ability to link these individual point-to-point relationships together to
comprise an application.

SipSession
A SipSession represents a SIP dialog to a SIP Servlet. There are some
differences between the life cycle of a SIP dialog and a SipSession. Principally,
the differences are:

� All messages within the SIP Servlet API belong to a SipSession, while some
SIP requests (such as OPTIONS and REGISTER) may exist outside a dialog

� A SipSession is created immediately and does not require a 1xx or 2xx
response to be received in order to establish the SipSession

� When a SIP dialog is terminated, the corresponding SipSession is not
destroyed, it must be explicitly invalidated or timed out

Adding attributes
An application may store information in the SipSession or the
SipApplicationSession using the setAttribute(String name, Object
attribute) method on either of these objects.

Removing attributes
Information store in the SipSession or SipApplicationSession can be retrieved
using the getAttribute(String name) method. If changes are made to the
retrieved information, then setAttribute method must be invoked after the
change.

Iterating over the Sessions
To iterate over the Sessions contained by the SipApplicationSession, two
methods are available:

� getSessions()

This method returns an Iterator over all sessions contained in
SipApplicationSession.

� getSessions(String protocol)

222 Developing SIP and IP Multimedia Subsystem (IMS) Applications

This method returns an Iterator over only sessions of a specific protocol
type. Specifying “SIP” will return SipSessions objects and “HTTP” will return
HttpSession objects.

Session Lifetime
A SipSession will timeout when explicitly invalidated using the invalidate()
method or when the containing SipApplicationSession is destroyed. Hence, the
lifetime of a SipSession is not linked to the lifetime of a SIP dialog.

A SipApplicationSession may also be explicitly invalidated using the
invalidate() method. In order to ensure that all sessions will be eventually
garbage collected even if not explicitly invalidated, the SipApplicationSession
has an inactivity timeout. The timeout is specified for an application by setting the
<session-timeout> in the SIP Deployment Descriptor, and if not set, the timeout
defaults to one minute. If a message is not received within that timeout period for
one of the contained SipSessions, then the SipApplicationSession can be
destroyed by the container.

The lifetime of a SipApplicationSession can be extended for a specified
number of minutes by an application using the setExpires(int minutes)
method.

An application may receive advance notice of a SipApplicationSession
expiration by registering for the sessionExpired callback provided by the
SipApplicationSessionListener interface. The expiry time may then be further
extended.

Where a SipApplicationSession contains a HttpSession, the lifetime for the
HttpSession is set not to expire. The HttpSession will expire when explicitly
invalidated, or when the containing SipApplicationSession is destroyed.

An application wishing to determine the last access time prior to the current
request may use the getLastAccessedTime() method on either the
SipApplicationSession or SipSession.

9.3.9 Listeners and events

A SIP application may register to listen for events in the application. In addition to
the servlet context events defined in javax.servlet, SIP Servlet defines a
number of events that an application may listen for. Table 9-8 on page 224 shows
the list of Listeners and the different events that they can listen for.

 Chapter 9. Developing SIP applications 223

Table 9-8 SIP Servlet Listener types

A listener implements the required interface in order to be invoked when the
appropriate event occurs. The container notifies all <listener> classes that are
registered in the SIP deployment descriptor when the event occurs.

An example of a listener class and the corresponding entry in the deployment
descriptor is shown in Example 9-10 and Example 9-11. The sample code in
Example 9-10 shows a Listener which extends the lifetime of a
SipApplicationSession based on a condition which is evaluated when the
SipApplicationSession has expired.

Example 9-10 Example SipApplicationSessionListener

package com.itso.sg2427255;

import javax.servlet.sip.SipApplicationSessionListener;
import javax.servlet.sip.SipApplicationSessionEvent;

public class MyListener implements SipApplicationSessionListener {

//perform appropriate action on session expiration, extend if needed
public void sessionExpired(SipApplicationSessionEvent ev) {

SipApplicationSession session = ev.getApplicationSession();

if (someTest == true) {
session.setExpires(minutesToExtend);

}
}

}

Listeners Events monitored

SipApplicationSessionListener Creation, destruction or timeout of a
SipApplicationSession

SipSessionListener Creation or destruction of a SipSession

SipSessionAttributeListener Addition, removal or replacement of
attributes in the SipSession

SipErrorListener ACK or PRACK not received within
timeout period

TimerListener Firing of a Timer

224 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Example 9-11 Example Listener entry in Deployment Descriptor

<listener>
<listener-class>com.itso.sg247255.MyListener</listener-class>

</listener>

9.3.10 Timers

SIP Servlet provides the ability for an application to schedule timers and be
notified by the container when these timers expire. This is useful where an
applications wishes to perform an operation on an established session at some
point in the future. For example, an application may require an announcement to
be triggered as a result of a user using a service longer than a fixed period of
time.

Creating a Timer
A TimerService object is available to the application using the attribute named
javax.servlet.sip.TimerService in the application’s ServletContext.

A ServletTimer is created using the createTimer method on the TimeService.
The application specifies the SipApplicationSession that the ServletTimer will
be associated with, the information that should be delivered when the timer
expires, the delay prior to invoking the timer and whether the timer should persist
across application server restarts. The createTimer method signature is as
follows;

ServletTimer createTimer(SipApplicationSession appSession, long delay,
boolean isPersistent, java.io.Serializable info)

A repeating timer may also be used. This can be set to repeat on a fixed time
interval, or a fixed time after the last time that the timer fired, taking into account
any delays experienced when firing the timer on the previous execution such as
garbage collection or other processes. The alternative method signature is as
follows:

ServletTimer createTimer(SipApplicationSession appSession, long delay,
boolean fixedDelay, boolean isPersistent, java.io.Serializable info)

Listening for the expiration of Timers
An application that wishes to be notified of the expiration of timers implements
the TimerListener interface and overrides the timeout(ServletTimer timer)
method to handle the expiry event. In addition, the class that implements the
TimerListener interface is registered as a <listener-class> in the deployment
descriptor as shown in Example 9-12.

 Chapter 9. Developing SIP applications 225

Example 9-12 Example <listener> deployment descriptor configuration

<listener>
<listener-class>com.itso.sg247255.Listener</listener-class>

</listener>

9.3.11 Security

By default, no authentication or authorization is performed by the SIP Servlet
container prior to invoking a SIP Servlet. An application may take advantage of
the underlying authentication and authorization services provided by the
container by either declaring the policies that the container is to enforce, or by
developing application logic which relies on the container to perform the
authentication and authorization.

Declarative security
An application may externalize security rules by specifying them in the
deployment descriptor. First, one or more servlets and SIP methods are grouped
together in a resource collection. For each resource collection, the following
constraints may be applied:

� Authorization constraints

The user must belong to at least one of security roles in the collection in order
for access to the SIP Servlet to be granted

� Authentication type

Specifies whether the container should return a 401 Unauthorized or a 407
Proxy Authentication Required response when sending an authentication
challenge

� User data constraints

Describes the characteristics of the transport that requests must be received
over

All of these constraints must be met in order for the servlet to be invoked,
otherwise the container will return a 401 Unauthorized or 407 Proxy
Authentication Required response.

Programmatic security
An application may need to implement authorization requirements which cannot
be expressed solely with the use of declarative security. For example, an
application may allow all users to invoke a SIP Servlet, but may want to perform
an authorization decision based on the contents of the message received. SIP
Servlet provides the ability to obtain the username or Principal associated with

226 Developing SIP and IP Multimedia Subsystem (IMS) Applications

the current authenticated request, or whether the current user is a member of a
given role using the following methods on the SipServletMessage interface:

� String getRemoteUser()

� java.security.Principal getUserPrincipal()

� boolean isUserInRole(String role)

9.3.12 Converged servlet

An application may deliver services through multiple interfaces, for example
through an HTTP interface to provide a user interface, and through SIP to
provide call signalling. To facilitate the development of applications that combine
both HTTP and SIP interfaces, WebSphere Application Server provides
ConvergedServlet. By using ConvergedServlet, an HttpServlet is able to share
resources with one or more SipServlet to create a converged application.

Extending the converged servlet
A ConvergedServlet can obtain a SipApplicationSession object by invoking the
method getApplicationSession(boolean createNewSession) on the
ConvergeHttpServletRequest object. An application may then operate on the
collection of sessions contained by the SipApplicationSession object.

A ConvergedServlet is also able to obtain a SipFactory from the ServletContext
to allow initial requests to be created.

Example 9-13 shows an example of both of these techniques.

Example 9-13 Example ConvergedServlet

public class CallControl extends ConvergedServlet implements Servlet {

private static final long serialVersionUID = 1L;
private SipFactory sipFactory;

public void init() throws ServletException {
sipFactory = (SipFactory)

getServletContext().getAttribute(SipServlet.SIP_FACTORY);

if (sipFactory == null){
System.out.println("No SipFactory in context object");

}

protected void doGet(HttpServletRequest req, HttpServletResponse
resp) throws ServletException, IOException {

 Chapter 9. Developing SIP applications 227

ConvergeHttpServletRequest creq = (ConvergeHttpServletRequest)
req;

SipApplicationSession appSession =
(SipApplicationSession)creq.getApplicationSession(true);

String state = (String)appSession.getAttribute("state");

...

Forwards and includes
A ConvergedServlet may forward or include a JSP™ or another servlet as a
result of servlet execution. The usual way for a HttpServlet to perform this is
using the getRequestDispatcher(String url) method on the
HttpServletRequest. Within a ConvergedServlet, this method returns null, and
so a named dispatcher is used instead.

To locate a JSP using a named dispatcher, the JSP is configured with a name in
the Web deployment descriptor. The dispatcher is then obtained from the
ServletContext using the getNamedDispatcher(String name) method. The Web
deployment descriptor stores a mapping between JSPs and names, and it is this
name that is used to dispatch the include or forward request to the specific JSP.
Example 9-14 shows an example of forwarding to a named JSP as shown in a
Web deployment descriptor in Example 9-15.

Example 9-14 Forwarding to a JSP using a named dispatcher

ServletContext context = getServletContext();
context.getNamedDispatcher("CallControlStatus").forward(req, resp);

Example 9-15 Naming a JSP within the Web deployment descriptor

<servlet>
 <servlet-name>CallControlStatus.jsp</servlet-name>

<jsp-file>CallControlStatus</jsp-file>
</servlet>

9.4 Best practices

There are a number of best practices for developing SIP Servlet applications.
Many of these best practices are not new to SIP Servlet. Rather, they are well

228 Developing SIP and IP Multimedia Subsystem (IMS) Applications

known practices for J2EE or SIP applications that are also applicable to SIP
Servlet applications.

9.4.1 Application layering

The principles of separation of concerns, and the advantages of layering
applications is well known. Several specific considerations apply to SIP Servlet
applications.

Separate business logic from SIP Servlet
When developing a SIP Servlet, the temptation is to embed all business logic
inside the SIP Servlet. Indeed, this temptation is greater than for HTTP servlet
given the greater number of potential life cycle conditions that a SIP Servlet may
need to handle.

However a clear advantage for separating the business logic from the SIP
Servlet is that the business logic is able to be reused regardless of the
communication channels through which requests are received.

A Plain Old Java Object (POJO) may be suitable as the basis for layering.
However, where a service requires transaction management, to be exposed
remotely or declarative security framework, then a Stateless Session Bean
facade is recommended to provide the layering.

Make use of a state machine
The SIP protocol has a well defined state machine. The SIP container shields
SIP application developers from complexities of the protocol including the state
machine. However, the use of a state machine is recommended both for
designing an application and for developing the logic to be executed at runtime.
This has benefits of providing a standard way for communicating the design of
the application, as well as the structure and flow of business logic within the
application.

Decompose application into reusable components
Functional decomposition of applications into reusable components is a well
known design approach. The SIP Servlet support for Application Composition
adds additional considerations for building application components.

For example, rather than embedding the functionality of a Registrar in every SIP
application, Application Composition can be used to allow a single Registrar to
be deployed, and each SIP application will rely on this function being available.
This allows reusable components to be created, rather than overloading a single
SIP Servlet with multiple independent sets of functionality.

 Chapter 9. Developing SIP applications 229

Hence, when designing a service to be deployed, consider whether it would be
appropriate to decomposed the service into a collection of servlets which rely on
Application Composition to deliver the functionality.

9.4.2 Message processing

Several SIP specific considerations apply when developing SIP Servlets to
process SIP messages for optimal system performance.

Optimize for response time
An application which is slow to respond may cause user dissatisfaction, for
example, taking longer than expected to establish a new call. In addition, the SIP
protocol defines a number of circumstances where a protocol level
retransmission will occur in the event that a message has not been received by a
User Agent. If a server does not respond in a timely manner, then
retransmissions may cause additional server load which exacerbates the delay in
response and further decreases user satisfaction.

There are a number of considerations that are applicable to SIP Servlet
applications. These include:

� Sending final responses as quickly as possible to avoid retransmissions

� Acknowledging responses as quickly as possible, again to avoid
retransmissions

� Minimizing garbage collection, for example, minimizing object creation and
tuning the garbage collector for latency over throughput

9.4.3 Implement specification design requirements

Applications that deliver functionality described in the SIP specification should
consider associated best practices. Two areas that require carefully
consideration are third party call control and registrar facility.

Third party call control best practices
RFC 3725 describes best practices for third party call control. When designing an
application that implements third party call control, the best practices should be
followed to choose the most appropriate flow for implementation. For example,
an alternate call signalling sequence is appropriate when one of the called
parties is an automata such as a voicemail server when compared to parties that
may not establish a session in a timely manner.

230 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Registrar requirements
An application implementing Registrar functionality should adhere to the
requirements in Section 10 of RFC 3261. It specifies in some detail the steps that
a Registrar must take, such as storing the received Call-ID and CSeq values in
order to ensure that a consistent registration status is maintained by the
Registrar.

9.4.4 Runtime development considerations

When developing a SIP application, it is important to consider the runtime
environment that the application will be deployed in.

Threadsafety
A SIP Servlet may be invoked by concurrent threads. Static or instance variables
in a SIP Servlet are generally discouraged, however where they are used, care
should be taken to ensure that any access to these resources are in a threadsafe
manner. In addition, when an application accesses a resource in a SipSession or
a SipApplicationSession, again care should be taken to ensure that these
resources are only accessed in a threadsafe manner.

Design for distribution and failover
Where a SIP Servlet is deployed in a clustered environment, the application is
marked as distributable in the deployment descriptor. The container will then
ensure that all requests within a given SipApplicationSession are directed to the
same application server. In order to allow the contents of the
SipApplicationSession and SipSession to fail over to another application server,
all attributes placed in these session must implement the Serializable interface.

In addition, an application sending an initial request should use the host and port
of the Stateless SIP Proxy when sending request to a WebSphere Application
Server cell. For example, when sending an INVITE, the request URI should be
set of the host and port of the Stateless SIP Proxy tier. This allows responses to
be directed via the Stateless SIP Proxy tier, rather than be directed only to a
single Application Server, therefore preventing a response being lost in the event
that an Application Server fails.

Given that static or instance variables are not distributed across Application
Servers, where an application needs to share state that is not stored in the
SipApplicationSession or SipSession, then an alternative approach must be
used. Several alternatives are available in a WebSphere Application Server
environment, such as using a database, using the DistributedMap or a
distributed caching framework.

 Chapter 9. Developing SIP applications 231

Minimize State
SipSessions consume a finite set of resources within the Application Server. In
order to maximize scalability of an application, it is recommended that
SipSessions are only created when needed. In addition, SipSessions should be
explicitly invalidated when no longer in use. This allows the container to reclaim
the resources and make them available to applications running with the container
in a more timely manner.

232 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 10. Sample SIP applications

In this chapter we introduce two sample SIP Applications and describe how to
use the WebSphere Application Server Toolkit to develop and test a simple SIP
application and a converged SIP and HTTP application.

This chapter contains the following:

� Application overview

� Registrar and proxy application

� Third Party Call Control application

10

© Copyright IBM Corp. 2007. All rights reserved. 233

10.1 Application overview

This Chapter introduces you to two sample application which show different
aspects of developing SIP applications using the WebSphere Application Server
Toolkit (AST).

The first of these applications is a simple Registrar and Proxy application. It
allows a User Agent to register an Address of Record with a Registrar Servlet. A
second User Agent then sends an INVITE to a Proxy Servlet, which relies on the
information stored by the registrar to proxy a request to the User Agent to
facilitate a call between two softphones.

The second application demonstrates how to develop a Third Party Call Control
Converged Application. A Web page is provided where two SIP URIs may be
entered, which initiates a call between two softphones. The status of the call is
updated on a Web page as it progresses through the call life cycle. We also
demonstrate Application composition by combining the Registrar function from
the first sample application with the Call Control function of this second
application.

10.2 Registrar and proxy application

In this section, you will create, deploy and test a simple Registrar and Proxy
application using AST.

10.2.1 The scenario

In this application, two softphone User Agents establish a VoIP session between
each other. Each softphone periodically sends REGISTER messages to a
Registrar servlet containing their current contact information.

Each User Agent’s current contact information is then used by a LocalProxy
servlet, so that when one of the User Agents sends an INVITE to the other using
the LocalProxy servlet, the requests is proxied to the current location of the other
User Agent.

The sequence diagram in Figure 10-1 on page 235 illustrated the interaction
between two User Agents. The User Agents Alice and Bob first REGISTER with
the Registrar servlet, then Alice places a call, sending an INVITE to Bob via the
LocalProxy servlet. Once Bob answers the phone, a media session is
established between the two parties.

234 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-1 Sequence Diagram for Registrar and Proxy Sample

10.3 Creating the SIP application project

We will now create the SIP Application that contains the Registrar and
LocalProxy SIP Servlets.

<<WebSphere Application Server>>

REGISTER

REGISTER

200 OK

store Contact for AOR

store Contact for AOR

200 OK

INVITE

INVITE

100 Trying

find Contact for AOR

Registrar :
SipServlet RegistrarStore : LocalProxy :

SipServlet

100 Trying

180 Ringing

180 Ringing

200 OK

200 OK

ACK

Media

Alice :
<<User Agent>>

Bob :
<<User Agent>>

 Chapter 10. Sample SIP applications 235

Create the project
1. Launch AST by selecting Start → All Programs → IBM WebSphere

Application Server Toolkit V6.1 → Application Server Toolkit.

2. The Workspace Launcher will then load as shown in Figure 10-2.

Figure 10-2 Selecting a workspace

3. Enter the path to your Workspace directory.

4. Click OK to continue.

5. Close the Welcome tab that is displayed on the Workspace.

You are now ready to create a SIP project.

6. Select File → New → Project.

The New Project Wizard will be displayed.

7. Select SIP → SIP Project.

8. Click Next to continue.

Note: The instructions for installing the WebSphere Application Server Toolkit
and WebSphere Application Server can be found in Appendix A, “Installing the
application development environment” on page 499 and Appendix B,
“Installing the sample application test environment” on page 531.

236 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-3 Create a SIP project - Select a Wizard

The New SIP Project dialog similar to Figure 10-4 on page 238 will be
displayed.

9. Enter RegistrarSample for the Project Name.

10.Click Next to continue.

 Chapter 10. Sample SIP applications 237

Figure 10-4 Specifying the Project Name, Contents and Target Runtime

A dialog showing the Project Facets will then be display.

11.Accept the default Project Facets and click Finish to create the new project.

12.Click Yes when prompted to switch to the J2EE perspective.

The SIP Project has now been created and can now be inspected within the
workspace.

13.Expand Other Projects → RegistrarSample.

The SIP Toolkit has created the src folder, where the application code will be
stored. In addition, a SIP deployment descriptor is created and added to the
application.

10.3.1 Developing the SIP Servlets

In this section, we create the SIP Servlets for the Registrar and LocalProxy. We
also create the business logic for storing mappings between Addresses of

238 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Record provided by a User Agent and the User Agent’s current contact
information.

Create the Registrar SIP Servlet
To create the Registrar SIP servlet we will use AST.

1. Select File → New → Other to create the New Wizard.

2. Select SIP → SIP Servlet.

3. Click Next.

Figure 10-5 New SIP Servlet Wizard

4. The Create SIP Servlet: A Specify class file destination dialog, similar to
Figure 10-6 on page 240, will be displayed.

a. In the Java package field, enter: com.ibm.itso.sg247255.sample1

b. In the Class name field, enter: Registrar

c. Click Next.

 Chapter 10. Sample SIP applications 239

Figure 10-6 Create SIP Servlet - Specify class file destination

5. The Create SIP Servlet: The Enter servlet deployment descriptor specific
information dialog, similar to Figure 10-7 on page 241, will be displayed. We
need to add a Mapping Condition so that the Registrar servlet will receive
requests that use the REGISTER method.

a. Click Add to the right of the “Mappings” list.

b. Then select Condition.

240 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-7 Create SIP Servlet - Enter servlet deployment descriptor specific information

6. The Add Mapping Condition dialog, similar to Figure 10-8 on page 242, will
be displayed.

a. In the Value field enter: REGISTER

b. Click OK.

c. Then click Next.

 Chapter 10. Sample SIP applications 241

Figure 10-8 Add Mapping Condition

7. You can now specify the modifiers, interfaces to implement and method stubs
to generate. For the Registrar sample, we will create the doRegister method
stub.

a. Click the doRegister check box.

b. Click Finish to create the SIP Servlet.

Develop the Registrar business logic
The development structure of the Registrar business logic consist of two
components:

� A Registrar SIP servlet

It receives the REGISTER requests and invokes a local RegistrationStore
class to store and/or remove the bindings between an Address of Record and
a Contact.

� The RegistrationStore

Stores the bindings in a simple in-memory Hashtable.

Registrar SIP servlet
Update the code generated for Registrar SipServlet with the code in Example
10-1.

Example 10-1 Registrar SipServlet

package com.ibm.itso.sg247255.sample1;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.servlet.Servlet;
import javax.servlet.ServletException;

242 Developing SIP and IP Multimedia Subsystem (IMS) Applications

import javax.servlet.sip.Address;
import javax.servlet.sip.SipServlet;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServletResponse;

public class Registrar extends SipServlet implements Servlet {

private static final long serialVersionUID = -6178653233719984033L;
static Logger logger =

Logger.getLogger("com.ibm.itso.sg247255.sample1.Registrar");

protected void doRegister(SipServletRequest req) throws
ServletException, IOException {

logger.log(Level.INFO, "Received REGISTER request for " +
req.getTo());

Address AddressOfRecord = req.getAddressHeader("To");
Address Contact = req.getAddressHeader("Contact");
int Expires = req.getExpires();

if (Expires == 0 || Contact.getExpires() == 0) {
RegistrarStore.removeContactForAOR(AddressOfRecord);
req.createResponse(SipServletResponse.SC_OK).send();

} else {
RegistrarStore.updateContactForAOR(AddressOfRecord, Contact);
SipServletResponse res = req.createResponse(200);
res.addAddressHeader("Contact", Contact, false);
res.send();

}
}

}

Registrar Store
The Registrar SIP servlet relies on the RegistrarStore to store the mapping
between the Address of Record and Contact in an in-memory Hashtable.

 Chapter 10. Sample SIP applications 243

1. Expand Other Projects → Registrar Sample → src.

2. Right-click the package com.ibm.itso.sg247255.sample1.

3. Select New → Class.

4. In the field Name, enter RegistrarStore.

5. Click Finish.

6. Update the RegistrarStore class to use the code shown in Example 10-2.

Example 10-2 RegistrarStore code

package com.ibm.itso.sg247255.sample1;

import java.util.Hashtable;
import java.util.logging.*;

import javax.servlet.sip.Address;
import javax.servlet.sip.URI;

public class RegistrarStore {

static Hashtable<URI, Address> Contacts = new Hashtable<URI,
Address>();

static Logger logger =
Logger.getLogger("com.ibm.itso.sg247255.sample1.RegistrarStore");

public static Address getContactForAOR (Address AddressOfRecord) {
logger.log(Level.INFO, "Returning binding for AOR: " +

AddressOfRecord);
return (Address) (Contacts.get(AddressOfRecord.getURI()));

}

Important: A production Registrar application would need to implement a
number of additional features that are not included in this sample application.

For example, a production application would have additional business logic to
handle multiple Contacts per Address of Record and would store the CSeq and
Call-ID in order to correctly handle out of order requests. It would also store
the bindings in a manner that could be distributed across servers, for example,
using a relational database or distributed cache.

Refer to RFC 3261, Section 10 for the requirements for developing a
Registrar.

244 Developing SIP and IP Multimedia Subsystem (IMS) Applications

public static Address getContactForAOR (URI URI) {
logger.log(Level.INFO, "Returning binding for AOR: " + URI);
return (Address) (Contacts.get(URI));

}

public static void updateContactForAOR (Address AddressOfRecord,
Address Contact) {

logger.log(Level.INFO, "Updating binding for AOR: " +
AddressOfRecord + ", Contact is: " + Contact);

if (Contacts.containsKey(AddressOfRecord.getURI())) {
Contacts.remove(AddressOfRecord.getURI());

}

Contacts.put(AddressOfRecord.getURI(), Contact);
}

public static void removeContactForAOR (Address AddressOfRecord) {
logger.log(Level.INFO, "Removing binding for AOR: " +

AddressOfRecord);
Contacts.remove(AddressOfRecord.getURI());

}

public static Hashtable getAllContacts () {
logger.log(Level.INFO, "All Contacts: " + Contacts.toString());
return Contacts;

}
}

Develop the Proxy
We will now create the LocalProxy SIP servlet that will be used to proxy INVITE
requests received to requested User Agent.

1. Select File → New → Other.

2. Expand SIP.

3. Select SIP Servlet.

a. For the Java package field, enter: com.ibm.itso.sg247255.sample1

b. For the Class name field, enter: LocalProxy

c. Click Next.

 Chapter 10. Sample SIP applications 245

4. Add Mapping so that the LocalProxy only receives requests that are for
method INVITE.

a. Click Add next to the list of Mappings.

b. Select Condition.

i. For the field Value, use INVITE.

ii. Click OK.

c. Click Next.

5. Select the doInvite check box.

6. Click Finish.

7. Complete the business logic for the LocalProxy servlet using the code shown
in Example 10-3.

Example 10-3 LocalProxy

package com.ibm.itso.sg247255.sample1;

import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.servlet.Servlet;
import javax.servlet.ServletException;
import javax.servlet.sip.Address;
import javax.servlet.sip.Proxy;
import javax.servlet.sip.SipServlet;
import javax.servlet.sip.SipServletRequest;
import javax.servlet.sip.SipServletResponse;
import javax.servlet.sip.URI;

import com.ibm.itso.sg247255.sample1.RegistrarStore;

public class LocalProxy extends SipServlet implements Servlet {

private static final long serialVersionUID = 4629937833502893124L;
static Logger logger =

Logger.getLogger("com.ibm.itso.sg247255.sample1.LocalProxy");

protected void doInvite(SipServletRequest req) throws
ServletException, IOException {

logger.log(Level.INFO, "Proxying INVITE received for " +
req.getTo());

Proxy proxy = req.getProxy();

246 Developing SIP and IP Multimedia Subsystem (IMS) Applications

URI uri = req.getTo().getURI();
Address contactAddress = (Address)

RegistrarStore.getContactForAOR(uri);

if (contactAddress == null) {
SipServletResponse res =

req.createResponse(SipServletResponse.SC_NOT_FOUND);
res.send();

} else {
proxy.proxyTo(contactAddress.getURI());

}
}

}}

Deployment descriptor
AST automatically creates and updates the deployment descriptor when SIP
Servlets are created.

You can review the contents of the deployment descriptor by clicking twice on
the SIP deployment descriptor. A summary of the information available in
deployment descriptor is displayed as shown in Figure 10-9 on page 248.

 Chapter 10. Sample SIP applications 247

Figure 10-9 SIP Deployment Descriptor overview

248 Developing SIP and IP Multimedia Subsystem (IMS) Applications

To review the source for the SIP deployment descriptor, click the Source tab
located at the bottom of the panel. The contents of the deployment descriptor are
displayed as shown in Figure 10-10.

Figure 10-10 SIP Deployment Descriptor Source

Deploy the application using the Administration Console
To deploy your SIP application on the WebSphere Application Server you need
to start the server. You also need to launch the Administration Console and enter
your username and password.

8. Expand Applications.

 Chapter 10. Sample SIP applications 249

9. Select Install New Application.

10.Enter the Full path of the of the application on the local file system.

11.In the Context root field, enter RegistrarSample.

The Install New Application dialog will appear similar to Figure 10-11.

Figure 10-11 Installing the SIP Application Archive

12.Click Next to accept the default option of Prompt me only when additional
information is required.

13.Click Next to accept the default installation options.

14.Click Next to accept the default module to server mapping.

15.Click Next to accept the default virtual host mapping.

250 Developing SIP and IP Multimedia Subsystem (IMS) Applications

16.Click Finish.

17.Click Save to save the application to the master configuration.

18.On the Enterprise Applications panel, select the RegistrarSample_sar
application.

19.Click Start to start this application.

The Administration Console will display that the application has been started
as shown in Figure 10-12.

Figure 10-12 RegistrarSample started

 Chapter 10. Sample SIP applications 251

10.3.2 Configure User Agents

We will use two softphone User Agents to test the applications. The softphones
are installed on the same machine as WebSphere Application Server as a self
contained unit test environment.

Two SIP User Agents are used, and the Address of Record for each User Agent
is as follows:

� sip:alice@127.0.0.1
� sip:bob@127.0.0.1

Configure X-Lite
The X-Lite softphone is configured as the first User Agent with the user account
sip:alice@127.0.0.1

1. Click Add to add a new SIP Account.

2. On the Account tab, in the User Details box:

a. For the Display Name field, enter: Alice

b. For the User Name field, enter: alice

c. For the Password field, enter: alicepassword

d. For the Authorization user name field, enter: alice

e. For the Domain field, enter: 127.0.0.1

3. Click OK.

4. Click Close on the SIP Accounts dialog.

Configure SIPXPhone
The SIPXPhone is configured as the second user account, sip:bob@127.0.0.1.
Locate the SIPXPhone installation directory.

1. Open the folder <sipxphone installation directory>\meta.

2. Open the file pinger-config in a text editor.

Note: The instructions for installing these User Agents can be found in A.2,
“SIP device client installation” on page 502.

Note: Using the loopback address of 127.0.0.1, simplifies the configuration for
a unit test environment.

252 Developing SIP and IP Multimedia Subsystem (IMS) Applications

3. Locate the line starting with PHONESET_LINE.URL, change it to read as
follows:

PHONESET_LINE.URL : sip:bob@127.0.0.1

4. Locate the line starting with SIP_TCP_PORT and change it to read as
follows:

SIP_TCP_PORT : 5070

5. Locate the line starting with SIP_UDP_PORT and change it to read as
follows:

SIP_UDP_PORT : 5070

6. Close and save the file

10.3.3 Testing the Registrar and proxy application

We test the Registar and Proxy by launching both User Agents and completing a
call between them.

Launch the User Agents
1. Launch X-Lite by Clicking Start → All Programs → X-Lite → X-Lite

X-Lite will now load. Confirm that the panel shows the phrase Your username
is: alice as shown in Figure 10-13 on page 254. This indicates that the User
Agent successfully registered with the server.

Note: Configuring different ports, avoids port conflict between the User Agent
and the WebSphere Application Server when you run them on the same
machine.

 Chapter 10. Sample SIP applications 253

Figure 10-13 X-Lite User Agents

2. Launch SIPXPhone by clicking Start → All Programs → SipXFoundry →
SipXPhone

SipXPhone will now load.Confirm that the SIP URI <sip:bob@127.0.0.1> is
displayed in the top bar as shown in Figure 10-14 on page 255. This indicates
that the User Agent has successfully registered with the server.

254 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-14 SIPXPhone User Agent

Place a call
We will now place a call between the two User Agents, relying on the Registrar
and LocalProxy to locate the other User Agent.

1. In X-Lite, place a call by entering the URI of the other party. Enter
sip:bob@127.0.0.1 and press Enter.

2. The X-Lite and sipXPhone User Agents will now show that a call is attempting
to be established as shown in Figure 10-15 on page 256.

Important: Before answering the call, you may want to mute the microphone
to minimize any feedback between the co-located User Agents.

 Chapter 10. Sample SIP applications 255

Figure 10-15 Call in Progress

3. Click Answer in SipXPhone to establish the call. Both User Agents will now
have established a call

4. Complete the call by clicking Disconnect in sipXphone. This will terminate
the call.

In this first application, we created a simple Registrar and Proxy SIP application
using AST. We also deployed this application in WebSphere Application Server
and tested it using two User Agents to establish a media session.

10.4 Third Party Call Control application

The second application introduces a Converged Application which will allow a
third party to establish a call between two parties using a Web interface.

256 Developing SIP and IP Multimedia Subsystem (IMS) Applications

10.4.1 Overview

The Third Party Call Control application provides a Web interface where a user
may initiate a call between two parties using a Web browser. The user initiates
the call through the browser and tracks the progress of the call between the two
parties. The functionality is delivered through a single Converged Application,
combining both the Web interface for initiating the call and displaying the status,
and the SIP interface for call signalling.

We demonstrate application composition between the Registrar and Proxy
sample application developed in the previous section with the Third Party Call
Control application. It allows the existing Registrar and Proxy services to be
reused rather than reimplemented. It also demonstrates layered approach to
building applications. For example, every application would not normally provide
their own Registrar functionality, instead when required this would be a service
deployed that all applications can rely on.

Figure 10-16 on page 258 shows the sequence diagram for a typical call being
established.

 Chapter 10. Sample SIP applications 257

Figure 10-16 Sequence Diagram for Third Party Call Control application

10.4.2 Develop using the Application Server Toolkit

For this application, we will use the integrated development and debugging
capabilities of the AST. We will also trace the execution for a detailed inspection
of the request flow.

Create the Converged SIP project
The Third Party Call Control application uses both SIP and Web artifacts, so we
will create a Converged Project which can contain both types of resources.

1. Select File → New → SIP → Converged Project

HTTP GET

sendInitialInvite

INVITE

INVITE

Media

Third Party
<<Web

Browser>>

Bob :
<<User Agent>>

Alice :
<<User Agent>>

180 Ringing

200 OK

200 OK

ACK

ACK

<<WebSphere Application Server>>

CallControl :
HttpServlet

LocalProxy :
SipServlet

258 Developing SIP and IP Multimedia Subsystem (IMS) Applications

2. Click Next

3. In the Project Name field enter ThirdPartyCallControl

4. Click Next.

5. Accept the default Project Facets and Click Next

6. Accept the default Web Module settings and Click Finish

The ThirdPartyCallControl project will be created as shown in Figure 10-17.

Figure 10-17 Third Party Call Control project

Create the CallControl servlet
We will now create the CallControl servlet which acts on commands received
from the Web based interface for the application. We start by expanding the
Dynamic Web Project and the ThirdPartyCallControl folder.

 Chapter 10. Sample SIP applications 259

1. Right-click ThirdPartyCallControl folder.

2. Select New → Servlet. The Create Servlet dialog will be displayed.

3. In the Java package field, enter: com.ibm.itso.sg247255.sample2

4. In the Class name field, enter: CallControl

5. In the Superclass field, change the Superclass.

a. Click Browse.

b. Enter: ConvergedServlet.

c. Select the Matching type:

ConvergedServlet - com.ibm.wsspi.sip.converge

d. The superclass field will now display:
com.ibm.wsspi.sip.converge.ConvergedSevlet.

e. Click Next.

The Create Servlet dialog will appear similar to Figure 10-18.

Figure 10-18 Create ClickToCall Servlet

6. Accept the default servlet deployment descriptor specific information and click
Next.

260 Developing SIP and IP Multimedia Subsystem (IMS) Applications

The Create Servlet dialog will be displayed similar to Figure 10-19 on
page 261.

7. Select the method stubs to be created.

a. Check init.

b. Confirm that the doGet is already checked.

c. Deselect doPost.

Figure 10-19 Specify modifiers, interfaces to implement, method stubs to generate

8. Click Finish to create the ConvergedServlet.

9. The CallControl servlet will now be created as shown in Figure 10-20 on
page 262.

 Chapter 10. Sample SIP applications 261

Figure 10-20 Generated Callcontrol Servlet

Complete the CallControl Business Logic
1. Update the CallControl servlet with the fields shown in Example 10-4.

Example 10-4 CallControl fields

private static final long serialVersionUID = -193948392020031L;
private SipFactory sipFactory;
private static final String DEFAULT_PARTY_A = "sip:alice@127.0.0.1";

262 Developing SIP and IP Multimedia Subsystem (IMS) Applications

private static final String DEFAULT_PARTY_B = "sip:bob@127.0.0.1";
private static Logger logger =
Logger.getLogger("com.ibm.itso.sg247255.sample2.CallControl");

2. Update the CallControl servlet’s init method as shown in Example 10-5.

Example 10-5 CallControl init method

public void init() throws ServletException {
logger.log(Level.INFO, "ThirdPartyCCServer init");

//obtain the sipFactory
sipFactory = (SipFactory)

etServletContext().getAttribute(SipServlet.SIP_FACTORY);
if (sipFactory == null){

throw new ServletException("No SipFactory in context object");
}

}

3. Update the CallControl servlet’s doGet method as shown in Example 10-6.

Example 10-6 CallControl doGet method

protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

ConvergeHttpServletRequest creq = (ConvergeHttpServletRequest) req;
SipApplicationSession appSession =
(SipApplicationSession)creq.getApplicationSession(true);

String state = (String)appSession.getAttribute("state");

SipURI toSipURI = null;
SipURI fromSipURI = null;
if (req.getParameter("toSipURI") != null &&
req.getParameter("fromSipURI") != null) {

toSipURI =
(SipURI)sipFactory.createURI(req.getParameter("toSipURI"));

fromSipURI =
(SipURI)sipFactory.createURI(req.getParameter("fromSipURI"));
} else {

toSipURI = (SipURI)appSession.getAttribute("toSipURI");
fromSipURI = (SipURI)appSession.getAttribute("fromSipURI");

}
//creating the session so we can always navigate back to the AppSession
HttpSession httpSession = req.getSession(true);

 Chapter 10. Sample SIP applications 263

//if no call in progress, just include the JSP
if (state == null && req.getParameter("Establish") == null &&
req.getParameter("Cancel") == null) {

req.setAttribute("pollInterval", 10000);
req.setAttribute("toSipURI", DEFAULT_PARTY_A);
req.setAttribute("fromSipURI", DEFAULT_PARTY_B);
req.setAttribute("state", "No Call in Progress");
req.setAttribute("createCallDisabled", "");
req.setAttribute("terminateCallDisabled", "disabled");

//otherwise, we have a call in progress or have received a command to
perform
} else {

req.setAttribute("toSipURI", toSipURI.toString());
req.setAttribute("fromSipURI", fromSipURI.toString());

//if we've received a command to establish a call, send the first
INVITE

if (req.getParameter("Establish") != null) {
CallController thirdPCC = (CallController)

getServletContext().getAttribute("callcontroller");
thirdPCC.sendInitialInvite(appSession, fromSipURI, toSipURI);

//disallow UI for creating new call while call is in progress
req.setAttribute("createCallDisabled", "disabled");
req.setAttribute("terminateCallDisabled", "");

} else if (req.getParameter("Terminate") != null) {
//update status for callback
CallController thirdPCC = (CallController)

getServletContext().getAttribute("callcontroller");
thirdPCC.sendByeToAll(appSession);

//disallow creating new or trying to terminate the call again
until terminate completed

req.setAttribute("createCallDisabled", "disabled");
req.setAttribute("terminateCallDisabled", "disabled");

}
//otherwise, just display status
req.setAttribute("state", appSession.getAttribute("state"));

}

getServletContext().getNamedDispatcher("CallControlStatus.jsp").forward
(req, resp);

264 Developing SIP and IP Multimedia Subsystem (IMS) Applications

}

Create Call Control Status JSP
The Call Control Status JSP provides the Web user interface for creating and
terminating the Third Party Call and reports on the status of the call. In this
section we create the JSP.

Create the JSP
1. Expand Dynamic Web Projects → ThirdPartyCallControl → WebContent.

2. Click New → JSP.

3. Accept the default folder.

4. Enter a File name of CallControlStatus.jsp.

5. Click Finish to accept the default template.

Update the contents of the <body> as shown in Example 10-7.

Example 10-7 Call Control Status Body Content

<body onLoad="javascript:pollForStatus()">
<h1>Third Party Call Control Sample</h1>
<form name="CallControl" action="CallControl" method="get">
To : <input type="text" name ="toSipURI" value="<%=
request.getAttribute("toSipURI") %>">

From : <input type="text" name ="fromSipURI" value="<%=
request.getAttribute("fromSipURI") %>">

Call Status: <div id="state"><%= request.getAttribute("state")
%></div>

<input type="submit" name="Establish" value="Establish" <%=
request.getAttribute("createCallDisabled") %>> <input type="submit"
name="Terminate" value="Terminate" <%=
request.getAttribute("terminateCallDisabled") %>>

</form>
</body>

6. Update the contents of the <head> as shown in Example 10-8.

Example 10-8 Call Control Status Head content

<title>Third Party Call Control</title>
<script type="text/javascript">
var xmlHttp;
function createXMLHttpRequest() {

if (window.ActiveXObject) {
xmlHttp = new ActiveXObject("Microsoft.XMLHTTP");

 Chapter 10. Sample SIP applications 265

}
else if (window.XMLHttpRequest) {

xmlHttp = new XMLHttpRequest();
}

}

function pollForStatus() {
createXMLHttpRequest();
var url = "CallControlStatusRPC";
xmlHttp.open("GET", url, true);
xmlHttp.onreadystatechange = pollForStatusCallback;
xmlHttp.send(null);

}

function pollForStatusCallback() {
if (xmlHttp.readyState == 4) {

if (xmlHttp.status == 200) {
//update the current call state
var state =

xmlHttp.responseXML.getElementsByTagName("state")[0].firstChild.data;
var elem = document.getElementById("state");
elem.innerHTML = state;

if (state == "No Call in Progress") {
document.forms[0].Establish.disabled = false;
document.forms[0].Terminate.disabled = true;

}

setTimeout("pollForStatus()", 100);
}

}
}
</script>
</head>

Register the JSP Name
The CallControlStatus JSP will use a registered name in the deployment
descriptor. This allows a NamedDispatcher to be used to dispatch to the JSP.

1. Expand Dynamic Web Projects.

2. Expand the ClickToCall folder.

3. Click twice on the ThirdPartyCallControl deployment descriptor. The
deployment descriptor will be displayed as shown in Figure 10-21 on
page 267.

266 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-21 Web Deployment Descriptor

4. Click the Details button within the Servlets and JSPs section.

5. Edit the Web Deployment Descriptor to add the <servlet> stanza for the
CallControlStatus.jsp.

 Chapter 10. Sample SIP applications 267

Example 10-9 Web Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app id="WebApp_ID">

<display-name>ClickToCall</display-name>
<servlet>

<servlet-name>CallControl</servlet-name>
<display-name>CallControl</display-name>
<description></description>
<servlet-class>
com.ibm.itso.sg247255.sample2.CallControl</servlet-class>

</servlet>
<servlet>

 <servlet-name>CallControlStatus.jsp</servlet-name>
 <display-name>CallControlStatus.jsp</display-name>
 <description></description>
 <jsp-file>CallControlStatus.jsp</jsp-file>
 </servlet>

<servlet-mapping>
<servlet-name>CallControl</servlet-name>
<url-pattern>/CallControl</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>index.html</welcome-file>
<welcome-file>index.htm</welcome-file>
<welcome-file>index.jsp</welcome-file>
<welcome-file>default.html</welcome-file>
<welcome-file>default.htm</welcome-file>
<welcome-file>default.jsp</welcome-file>

</welcome-file-list>
</web-app>

Create CallControlStatusRPC Converged Servlet
1. Create a Converged Servlet named: CallControlStatusRPC

(Follow the steps in “Create the CallControl servlet” on page 259.)

2. Update the CallControlStatusRPC servlet as shown in Example 10-10.

As the call progresses, SipApplicationSession is updated to allow the progress of
the call to be monitored. The monitoring is performed using a ConvergedServlet.
The ConvergedServlet relies on the link between an HttpSession and the
SipApplicationSession.

268 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Example 10-10 CallControlStatusRPC ConvergedServlet

package com.ibm.itso.sg2427255.sample2;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import com.ibm.websphere.servlet.session.IBMApplicationSession;
import com.ibm.wsspi.sip.converge.ConvergeHttpServletRequest;
import com.ibm.wsspi.sip.converge.ConvergedServlet;

public class CallControlStatusRPC extends ConvergedServlet implements
javax.servlet.Servlet {

private static final long serialVersionUID = -49838594892L;
static Logger logger =

Logger.getLogger("com.ibm.itso.sg247255.sample2.CallControlStatusRPC");

protected void doGet(HttpServletRequest req, HttpServletResponse
res) throws ServletException, IOException {

//obtain the ApplicationSession that this HttpSession is
contained by

ConvergeHttpServletRequest convergedReq =
(ConvergeHttpServletRequest)req;

IBMApplicationSession appSession =
convergedReq.getApplicationSession();

//retrieve the state and pollInterval for this call
String state = (String)appSession.getAttribute("state");

//if no call in progress, initialise with defaults
if (state == null) {

state = new String("No Call in Progress");
}

 Chapter 10. Sample SIP applications 269

//return to the AJAX client the current state of the call and
when next to poll

PrintWriter out = res.getWriter();

res.setContentType("text/xml");
res.setHeader("Cache-Control", "no-cache");
out.println("<state>" + state + "</state>");
logger.log(Level.INFO, state);
out.close();

}

}

Create Call Control SipServlet
The Call Control SipServlet provides the necessary business logic for creating,
managing and terminating the third party call.

1. Select File → New → Other.

2. Expand SIP and select SIP Servlet as shown in Figure 10-22.

270 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-22 Create a SIP Servlet

The Create SIP Servlet dialog should appear as shown in Figure 10-23.

3. In the Java package field, enter: com.ibm.itso.sg247255.sample2

4. In the Class name field, enter: CallControl

5. Verify that the Superclass is: javax.servlet.sip.SipServlet

6. Click Next.

 Chapter 10. Sample SIP applications 271

Figure 10-23 Create CallControl SipServlet

7. On the Servlet Deployment Descriptor Specific Information panel, accept the
default and click Next.

The dialog for specifying modifiers, interfaces to implement and method stubs to
generate will appear similar to Figure 10-24 on page 273.

Tip: The CallControl SipServlet sends requests and receives the
corresponding responses. The only Sip requests that it handles is the BYE
request, which will only be sent as part of an existing Sip dialog.

Hence, no mapping is required in the deployment descriptor for handling the
BYE method. The container will dispatch the request to SipServlet that is part
of the existing dialog.

272 Developing SIP and IP Multimedia Subsystem (IMS) Applications

8. Create method stubs for the CallControl SIP servlet.

a. Check:

doBye, doErrorResponse, doProvisionalResponse, doSuccessResponse

b. Click Finish and the CallControl SIP servlet will be created.

Figure 10-24 Specifying modifiers, interfaces to implement, method stubs to generate

9. Implement the doSuccessResponse method as shown in Example 10-11.

The doSuccessResponse method is where the majority of the control logic
lies. It is responsible for linking the two SIP dialogs with each other, so
messages in one dialog may trigger messages in the other dialog. At call
establishment time, the two dialogs are linked by storing the SipSession for
the first dialog as a reference to the SipSession for the second dialog. This
allows action to be taken on the opposing dialog. For example, if a BYE
request is received in one dialog, the SipSession is used to locate the
opposing dialog, so that the BYE request can be proxied on.

 Chapter 10. Sample SIP applications 273

Example 10-11 CallController doSuccessResponse method

protected void doSuccessResponse(SipServletResponse resp) throws
IOException {

logger.log(Level.INFO, "Received success response with method from "
+ resp.getFrom());

SipApplicationSession appSession = resp.getApplicationSession();

//received a response to a BYE
if (resp.getMethod().equalsIgnoreCase("BYE")) {

logger.log(Level.INFO, "Terminated call with " +
resp.getFrom().getURI());

appSession.setAttribute("state","Terminated call with " +
getUserFromAddress(resp.getFrom()));

//if there are no more sessions, no dialogs, therefore sessions
are all terminated

logger.log(Level.INFO, "Invalidating session " + resp.getFrom());
resp.getSession().invalidate();
Iterator it = appSession.getSessions("SIP");
if (!it.hasNext()) {

appSession.setAttribute("state","No Call in Progress");
}
return;

}

//received a response to something other than a BYE or an INVITE --
nothing to do

if (!resp.getMethod().equalsIgnoreCase("INVITE")){
return;

}

SipServletRequest req = resp.getRequest();
SipServletRequest req2 = (SipServletRequest)

req.getAttribute("peer.req");

SipURI to = (SipURI) req.getTo().getURI();
SipURI from = (SipURI) req.getFrom().getURI();

//if this is a response for the first invite
if (req2 == null) {

logger.log(Level.INFO, "Received response to the first INVITE");

274 Developing SIP and IP Multimedia Subsystem (IMS) Applications

SipServletRequest invite =
sipFactory.createRequest(appSession,"INVITE",to,from);

invite.setRequestURI(from);
copyContent(resp, invite);
invite.setAttribute("peer.req", req);
invite.setAttribute("peer.resp", resp);

//trigger session creation so we can relay subsequent requests
SipSession dialog = resp.getSession();
SipSession dialog2 = invite.getSession();

// associate the two dialogs through the "peer" attribute
dialog.setAttribute("peer", dialog2);
dialog2.setAttribute("peer", dialog);

req.getApplicationSession().setAttribute("state", new
String(to.getUser() + " answered, trying " + from.getUser()));

invite.send();

} else {
logger.log(Level.INFO, "Received response to the second INVITE");
req.getApplicationSession().setAttribute("state", new

String("Call between " + from.getUser() + " and " + to.getUser() + "
established"));

SipServletRequest ack = resp.createAck();
ack.send();
SipServletResponse peerResp =(SipServletResponse)

resp.getRequest().getAttribute("peer.resp");
SipServletRequest ack2 = peerResp.createAck();
copyContent(resp, ack2);
ack2.send();

}
}

10.Implement the doBye method as shown in Example 10-12.

The doBye method is invoked when one of the User Agents terminates the
call by sending a BYE request as part of the existing dialog.

Example 10-12 Call Controller doBye

protected void doBye(SipServletRequest bye1) throws
ServletException, IOException {

logger.log(Level.INFO, "Received a BYE from " + bye1.getFrom());

 Chapter 10. Sample SIP applications 275

if (bye1.isInitial()) {
throw new ServletException("Got initial BYE from " +

getUserFromAddress(bye1.getFrom()));
}

SipSession dialog1 = bye1.getSession();
SipSession dialog2 = (SipSession) dialog1.getAttribute("peer");

if (dialog2 == null) {
throw new ServletException("no peer SipSession; cannot forward

BYE");
}

SipServletRequest bye2 = dialog2.createRequest("BYE");
bye2.setAttribute("peer.req", bye1);
copyContent(bye1, bye2);
bye1.getApplicationSession().setAttribute("state","Received BYE

from " + getUserFromAddress(bye1.getFrom()) + ", sending BYE to " +
getUserFromAddress(bye2.getTo()));

bye1.createResponse(200);
bye1.send();
bye1.getSession().invalidate();
Iterator it = bye1.getApplicationSession().getSessions("SIP");
if (!it.hasNext()) {

bye1.getApplicationSession().setAttribute("state","No Call in
Progress");

}
bye2.send();

11.Implement the sendInitialInvite method as shown in Example 10-13.

The sendInitialInvite method is invoked by the Call Control Servlet to initiate
the call between the two parties, sending INVITE requests to the parties.

Example 10-13 Call Controller sendInitialInvite method

public void sendInitialInvite(SipApplicationSession appSession, SipURI
from, SipURI to) throws IOException {

logger.log(Level.INFO, "Sending intial invite");
SipServletRequest inviteReq =

sipFactory.createRequest(appSession,"INVITE",from, to);
inviteReq.setRequestURI(to);
SipSession session = inviteReq.getSession();
try {

276 Developing SIP and IP Multimedia Subsystem (IMS) Applications

session.setHandler("CallController");
} catch (ServletException e) {

// handle mismatch between deployment descriptor and code
}

appSession.setAttribute("toSipURI",to);
appSession.setAttribute("fromSipURI",from);
appSession.setAttribute("state", new String("Trying " + to.getUser()

));
inviteReq.send();

}

12.Implement the init method as shown in Example 10-14.

The init method is used to obtain a SipFactory from the ServletContext, and to
store the CallController as an attribute in the ServletContext so this SipServlet
may be located by other Servlets that want to initiate a Third Party Call.

Example 10-14 Call Controller init method

public void init() throws ServletException {
logger.log(Level.INFO, "Initialising ThirdPartyCallController");
getServletContext().setAttribute("callcontroller",this);

sipFactory = (SipFactory)
getServletContext().getAttribute(SIP_FACTORY);

if (sipFactory == null) {
throw new ServletException("No SipFactory in context");

}
}

13.In order for the init method to be invoked at server startup, load the SIP
Servlet Deployment Descriptor

a. Select the CallController servlet.

b. Under the section Load on Startup, check the box Load on startup.

14.As this is a Converged Application, the same Servlet must be registered in
the Web deployment descriptor.

a. Click twice on the ThirdPartyCallControl deployment descriptor.

b. Click Add to create a new Servlet definition.

c. Check the box Use existing Servlet class.

d. Click Browse.

e. Select CallController.

 Chapter 10. Sample SIP applications 277

f. Click Finish to create the servlet definition.

g. Under the section Load on Startup, check the box Load on startup.

15.Implement the sendByeToAll method as shown in Example 10-15 on
page 278.

This method is used when the ThirdParty controller wants to terminate the
established call. This sends a BYE to both parties of the dialog.

The two dialogs are located by iterating through the list of sessions of protocol
type SIP contained in the SipApplicationSession. A given SipSession may be
invalidated concurrently, a NullPointerException is explicitly used to catch and
handle this situation.

Example 10-15 Call Controler sendByeToAll method

public void sendByeToAll(SipApplicationSession appSession) throws
IOException {

logger.log(Level.INFO, "Terminating all calls");
appSession.setAttribute("state","Terminating call");

//send BYE on both dialogs
Iterator iter = appSession.getSessions("SIP");
while (iter.hasNext()) {

logger.log(Level.INFO, "Sending a BYE for a session");
try {

SipSession aSession = (SipSession) iter.next();
aSession.createRequest("BYE").send();

} catch (NullPointerException npe) {
logger.log(Level.INFO, "Failed to send BYE; session already

cleaned up");
}

}

10.4.3 Compose the Application

The application to be deployed will rely on the Registrar functionality developed
in the previous sample. This allows the SIP URIs to be specified in the Call
Control application in terms of well known Address of Records, rather than the
more transient current contact information for a given user or device.

Rather that adding Registrar functionality directly to the application, this
functionality shall be composed by combining the existing Registrar functionality

278 Developing SIP and IP Multimedia Subsystem (IMS) Applications

with the newly developed Third Party Call Control functionality as shown in
Figure 10-25 on page 279.

Figure 10-25 CallControlEAR

1. Select File → New → Other.

2. Expand the J2EE folder.

3. Click Enterprise Application Project.

4. Click Next.

5. Enter a Project Name of ThirdPartyCallControlEAR.

6. Click Next.

7. Accept the default Project Facets.

8. Click Next.

9. Add the ThirdPartyCallControl and RegistrarSample projects as Modules as
shown in Figure 10-26 on page 280.

CallControlEAR
<<Enterprise Application Archive>>

ClickToCall
<<Web Application Archive>>

RegistrarSample
<<SIP Application Archive>>

 Chapter 10. Sample SIP applications 279

Figure 10-26 Add J2EE Modules to the EAR

10.Click Finish to create the EAR.

10.4.4 Deploy the converged SIP/J2EE application

If you have an application server instance already running from the previous
sample, stop the instance. We will use this instance to automate the deployment
of the application.

Configure the Application Server
1. Select File → New → Other.

2. Expand Server. Select Server.

3. Click Next.

The New Server dialog will display as shown in Figure 10-27 on page 281.

280 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-27 Define a New Server

4. Accept the defaults and click Next.

This will allow you to configure the Server installed earlier as the Server to
publish the project to. The wizard will now locate the available profiles and
display these in the WebSphere Server Settings dialog similar to that shown in
Figure 10-28 on page 282.

 Chapter 10. Sample SIP applications 281

Figure 10-28 WebSphere Server Settings

5. Configure the WebSphere Profile that you will use for testing.

a. Select the WebSphere profile that you want to use in the WebSphere
profile name drop down.

b. If security is enabled, ensure that the Security is enabled on this server
check box is checked and configure authentication as follows:

i. In the User ID field, enter the username entered earlier.

282 Developing SIP and IP Multimedia Subsystem (IMS) Applications

ii. In the Password field, enter the password entered earlier.

c. Click Next to continue.

6. The Add and Remove project dialog will now display as shown in
Figure 10-29.

Figure 10-29 Add and Remove Projects

7. Add the EAR file to the list of Configured projects and click Add.

8. Complete the configuration and click Finish.

 Chapter 10. Sample SIP applications 283

9. A new Server has now been added to the list of Servers as shown in
Figure 10-30.

Figure 10-30 WebSphere v6.1 Server @ localhost

10.Double-click the server that you configured. A window similar to Figure 10-31
on page 285 will be displayed.

284 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-31 Server Overview

Note: If you want to make further changes to the Server Configuration, they
can be performed using this panel. For example, if you want to change the
frequency of Automatic Publishing from 5 seconds to some other value, then
this can be changed on this page.

 Chapter 10. Sample SIP applications 285

10.4.5 Testing the Third Party Call Control application

To test this application, we will use the same User Agents configuration as the
previous example. The two User Agents will operate with the WebSphere
Application Server running on the same machine.

Start the Server
1. Right-click the server listed in the Server Panel.

A menu as shown in Figure 10-32 will be displayed.

2. Select Start to start WebSphere Application Server.

Figure 10-32 Select Start from the Server Control Menu

3. A Console tab will now be opened, and status information of the server
start-up will be displayed.

Start the User Agents
1. Start sipXphone.

2. Start X-Lite.

Both clients should register successfully as they did in the previous sample.

286 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Test the Application
1. Within the Project Explorer Panel.

a. Expand the ThirdPartyCallControl project → Servlets.

b. Select CallControl.

2. Right-click CallControl.

3. Launch a browser window containing the Third Party Call Control Application.
Select Run As → Run on Server.

4. The Define a New Server panel will be displayed as shown in Figure 10-33 on
page 288.

Note: See 10.3.3, “Testing the Registrar and proxy application” on page 253
for steps on how to start the sipXphone and X-Lite softphones.

 Chapter 10. Sample SIP applications 287

Figure 10-33 Run On Server

5. Accept the default selection of the existing server.

6. Click Finish to launch a test browser.

7. The test browser will launch as shown in Figure 10-34 on page 289.

288 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-34 Third Party Call Control Sample

8. The SIP URIs to establish a call To and From have been pre-filled with
sip:alice@127.0.0.1 and sip:bob@127.0.0.1. Click Establish to setup the
call.

9. Alice’s phone will now start ringing. Click the Off Hook button in X-Lite to
accept the call.

10.Bob’s phone will now start ringing. Click the Off Hook button in sipXphone to
accept the call.

11.As the session continues, the Third Party Call Control Sample status page
changes to reflect the status of the call.

12.In sipXphone, click Disconnect to terminate the call.

You have now seen the Third Party Call Control application in use.

10.4.6 Debug and trace the application

You will use the integrated debugging support in the AST to set breakpoints in
the execution of the application, step through the execution of the code and
inspect the value of variables.

1. Switch to the Java perspective.

2. In the Project Explorer, expand the ThirdPartyCallControl folder.

3. Expand src → com.ibm.itso.sg247255.sample2 → CallController.java.

4. Select the doSuccessResponse method to navigate to this method.

5. Set a breakpoint by clicking twice in the gray bar to the left of the source code.
A breakpoint marker will display as shown in Figure 10-35 on page 290.

 Chapter 10. Sample SIP applications 289

Figure 10-35 Setting a Breakpoint in CallController

6. Right-click the WebSphere V6.1 @ localhost server. Select the option debug
to start the server in debug mode.

7. The server will now commence starting up in debug mode. Once the server
has started, you will be prompted to switch to the Debug perspective as
shown in Figure 10-36 on page 291.

Note: In order for the debugger to be active, the server must be started in
debug mode. If the Application Server is already running, stop it by clicking the
Stop the Server button on the left-hand side of the Server panel.

If sipXphone and X-Lite are already running, you need to stop these as well.

290 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-36 Confirm Perspective Switch

8. Click Yes to switch to the Debug perspective. The Debug perspective will be
displayed similar to Figure 10-37 on page 292.

 Chapter 10. Sample SIP applications 291

Figure 10-37 Debug Perspective

9. Start sipXphone and X-Lite.

10.Switch to the Java Perspective and launch the Click to Call Sample
application using the same steps used in “Test the Application” on page 287.

292 Developing SIP and IP Multimedia Subsystem (IMS) Applications

11.Once the call has been answered in X-Lite, the focus in the Application
Server Toolkit will highlight the thread of execution which has been
suspended as shown in Figure 10-38.

Figure 10-38 CallController Debug in Progress

12.The debug tools of Resume, Step Into, Step Over, Step Return are available
in the top row of the Debug panel.

 Chapter 10. Sample SIP applications 293

13.Variables may be inspected using the Variables panel. As shown in
Figure 10-38 on page 293, the IncomingSipServletResponse may be
inspected, and the contents of this object inspected further. For example, the
contents of the From Header are shown above as being sip:bob@127.0.0.1.

14.Press Resume to continue execution of the application.

You have now seen how to set a breakpoint and debug a SipServlet executing
with the test environment.

Tracing the SIP Container
In order to see the flow of SIP messages through WebSphere Application Server,
tracing of the SIP container may be performed. This may be useful particularly
when inspecting the operation of a converged application, or where multiple
resources are invoked.

1. Switch to the J2EE Perspective.

2. Right-click the WebSphere v6.1 @ localhost server.

3. Select Run Administrative Console.

4. Log onto the Administration Console by entering your username and
password.

5. Expand Troubleshooting.

6. Select Logs and Trace.

7. Select server1 → Diagnostic Trace → Runtime Underneath Additional
Properties.

8. Select Change Log Detail levels.

9. Change the log trace string to *=info: com.ibm.ws.sip.*=all. The console
will appear similar to that shown in Figure 10-39 on page 295.

294 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 10-39 Configuring SIP Tracing

10.Click OK.

 Chapter 10. Sample SIP applications 295

11.Click Save to save the changes to the master configuration.

12.The runtime will now output trace information matching the trace specification
you entered.

13.Load the trace.log file. This will be located in the Application Server’s log
directory. An example of the output created is shown in Example 10-16.

Example 10-16 Example trace output

[23/06/06 11:38:17:043 BST] 00000090 IncomingMessa 3
IncomingMessageEvent IncomingMessageEvent [91] queued
[23/06/06 11:38:17:043 BST] 00000090 SIPUdpConnect >
SIPUdpConnection$SIPReadHandler: read: entry: id=888943868 Entry
[23/06/06 11:38:17:043 BST] 00000090 SIPUdpConnect >
SIPUdpConnection$SIPReadHandler: validateReadRequest: entry:
id=888943868 Entry
[23/06/06 11:38:17:043 BST] 00000090 SIPUdpConnect <
SIPUdpConnection$SIPReadHandler: validateReadRequest: exit:
id=888943868 Exit
[23/06/06 11:38:17:043 BST] 00000090 SIPMessageFac >
SIPMessageFactory:getObject: entry: id=77857956 Entry
[23/06/06 11:38:17:043 BST] 00000090 SIPMessageFac 3
SIPMessageFactory:object removed from object pool
[23/06/06 11:38:17:043 BST] 00000090 SIPMessageFac <
SIPMessageFactory:getObject: exit: id=77857956 Exit
[23/06/06 11:38:17:043 BST] 00000090 SIPUdpConnect <
SIPUdpConnection$SIPReadHandler: read: exit: id=888943868 Exit
[23/06/06 11:38:17:043 BST] 00000090 SIPUdpConnect <
SIPUdpConnection$SIPReadHandler: complete: exit: id=888943868 Exit
[23/06/06 11:38:17:043 BST] 0000002a IncomingMessa 3
IncomingMessageEvent IncomingMessageEvent [91] dispatched from
[127.0.0.1:3834/UDP]
SIP/2.0 200 OK
Via: SIP/2.0/UDP
NOMAD.uk.ibm.com:5060;branch=z9hG4bK936417551780891;received=127.0.0.1;
ibmsid=local.1151056881297_7_7
Via: SIP/2.0/UDP
NOMAD.uk.ibm.com:5060;ibmsid=local.1151056881297_6_6;branch=z9hG4bK6385
92172166077
Contact: <sip:alice@127.0.0.1:3834;rinstance=faacca596eda9e86>
To: <sip:alice@127.0.0.1>;tag=683a2071
From: <sip:bob@127.0.0.1>;tag=9561759554153756_local.1151056881297_6_6
Call-ID: 6957398777660333@NOMAD.uk.ibm.com
CSeq: 2 INVITE
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE,
SUBSCRIBE, INFO

296 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Content-Type: application/sdp
User-Agent: X-Lite release 1002tx stamp 29712
Content-Length: 429

v=0
o=- 3 2 IN IP4 9.146.11.27
s=<CounterPath eyeBeam 1.5>
c=IN IP4 9.146.11.27
t=0 0
m=audio 4140 RTP/AVP 107 119 6 0 98 8 3 5 101
a=alt:1 2 : KxLZ0acl W1gIOtTw 9.146.11.27 4140
a=alt:2 1 : +RWFpHC/ UVtoXZDU 192.168.37.1 4140
a=fmtp:101 0-15
a=rtpmap:107 BV32/16000
a=rtpmap:119 BV32-FEC/16000
a=rtpmap:98 iLBC/8000
a=rtpmap:101 telephone-event/8000
a=sendrecv
a=x-rtp-session-id:9FE72A42BF9142D38C141690A9C0AECA

You have now seen how to trace the application and inspect the flow of events
through the SIP container.

 Chapter 10. Sample SIP applications 297

298 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Part 4 Developing IMS
applications

Part 4 provides guidelines for developing applications that use the IBM
WebSphere IP Multimedia Subsystem Connector, the IBM WebSphere Presence
Server and the IBM WebSphere Telecom Web Services Server. The working
examples demonstrate how to create composite services.

Part 4

© Copyright IBM Corp. 2007. All rights reserved. 299

300 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 11. Designing IMS services

This chapter provides an overview of composite services and introduces the
design process with relevant guidelines for creating services that use the IBM
IMS solution products. It also provides the description of the design for FindHelp,
the sample IMS service implemented in this redbook.

This chapter contains the following:

� Overview of IMS composite services

� Designing composite services

� Sample application design

11

© Copyright IBM Corp. 2007. All rights reserved. 301

11.1 Overview of IMS composite services

IP-based networks and services are enabling the migration to full convergence
where the use of standard based framework allow for the deployment of
integrated Web based applications that leverage the underlying
telecommunications networks.

In this section we introduce IBM enablement solution for composite services and
identify the benefits associated with creating services in this manner. We also
provide design guidelines for creating IMS composite services.

IMS composite services are created by combining two or more service building
blocks.

� IMS composite service

Composite service is defined as end user service created utilizing reusable
service building blocks.

� Service building block

Service building blocks are components that exposes well defined interfaces
that can be consumed by calling entities. Service building blocks can be
separated into two categories:

– Enablers

These are normally Web service entities that are not sold to end users.
Instead they are combined to provide services for example location
service and map service. Note that an enabler can be a SIP enabled
application that is exposed as a Web service such as Presence Server.

– Foundation services

Foundation services are SIP based entities that can be combined to
create new services. They are available as stand-alone services. Example
foundations include conferencing and multiplayer gaming.

11.1.1 Composite services architecture

The IBM IMS composite service architecture supports two categories of service
composition:

� Service Orchestration

This involves the composition of foundation services utilizing either the CSCF
or Service Capability Interaction Manager (SCIM) within the IMS architecture.
The CSCF is used to compose services if the foundation services act as SIP
Proxies where the service acts as a user agent server and consumes the last
SIP message. A SCIM is required if multiple foundation services act as user

302 Developing SIP and IP Multimedia Subsystem (IMS) Applications

agent servers. The original SIP message is sent to all services and the
responses are correlated into a single response. Currently the SCIM is
loosely defined within the 3GPP specifications.

� Service Choreography

This involves the composition of enablers utilizing a Business Process
Execution Language (BPEL) engine such as WebSphere Process Server.

Figure 11-1 is an illustration of the overview of the IBM IMS service composition.

Figure 11-1 IBM IMS service composition

11.2 Composite services choreography

As mentioned above, service choreography is utilized when composing enablers
that are implemented as Web Services. The IBM IMS service composition

Choreography

ESB

Service Capability Interaction Manager
(SCIM)

CSCF

Enabler Enabler BPEL Engine

SIP
Application

Server

SIP
Application

Server

SIP
Application

Server

HTTP/
JMS

HTTP/
JMS

HTTP/
JMS

HTTP/
JMS

HTTP/
JMS

HTTP/
JMS

SIP SIP

SIP

SIP

Orchestration

….

 Chapter 11. Designing IMS services 303

architecture includes the following components which support service
choreography:

� SIP Application Server

The SIP application server receives SIP based message and determines if
service choreography is required. The message is parsed and passed to an
endpoint exposed on the enterprise service bus.

� Enterprise Service Bus

The Enterprise Service Bus (ESB) provides the middleware to convert
protocol and format of inbound requests. It routes requests to the BPEL
Engine, and additionally will complete the conversion and routing for exposed
enablers such as Location Server and Map Service.

� BPEL Engine

The BPEL engine provides the service choreography engine. This usually
involves the composition of two or more Web services.

Figure 11-2 shows the architecture of a Route Finder application that utilizes
service choreography to retrieve the users current location followed by a map
and route request for the user.

Figure 11-2 Service Choreography

ESB

SIP Application
Server

Location
Server

BPEL
Engine

Map
Service

HTTP/
JMS

HTTP/
JMS

HTTP/
JMS

HTTP/
JMS

Route
Finder

304 Developing SIP and IP Multimedia Subsystem (IMS) Applications

11.2.1 Composite services orchestration

Service orchestration composites foundation services. The SIP composite
service shown in Figure 11-3 is based on foundation services acting as user
agent servers and therefore require composition by a SCIM. Requests are
forwarded by the CSCF to the SCIM, which then sends the requests to the
multiplayer gaming and conferencing services. The responses are sent through
the SCIM which is responsible for collating these into a single response that is
sent to the client. The client is unaware of the services orchestration.

Figure 11-3 Service Orchestration

11.3 Designing composite services

This section introduces the design process and provides design guidelines that
are relevant for the IBM IMS solution products. It considers when it is appropriate
to utilize SIP Web Services, how and when to integrate BPEL into a service and
the options available for an Enterprise Service Bus.

11.3.1 Design process

Designing a composite service can be separated into the following steps:

� Analysis

CSCFCSCF

Service Capability Interaction Manager
(SCIM)

Service Capability Interaction Manager
(SCIM)

SIP
Application Server

SIP
Application Server

Multiplayer
Gaming

Multiplayer
Gaming

SIP
Application Server

SIP
Application Server

ConferenceConference

SIP SIP

SIP

 Chapter 11. Designing IMS services 305

Analyze the end user service and identify the service building blocks required.
This process is similar in practice to service identification within SOA. Here
are a number of resources that provide guidance:

– Patterns: Service-oriented Architecture and Web Services, SG24-6303

http://www.redbooks.ibm.com/abstracts/sg246303.html

– Service-oriented modeling and architecture

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-
design1/

– Elements of Service-Oriented Analysis and Design

http://www-128.ibm.com/developerworks/webservices/library/ws-soad
1/

� Flow consideration

Consider if service orchestration and/or choreography is appropriate within
this service.

� Component selection

Search for existing service building blocks for the appropriate services. It is
important to reused service building blocks were possible to get the most
benefit out of service composition. Therefore it is critical that you maintain
service building block repository that is searchable to assist reuse. Here is a
list of suggested reading materials regarding reusable repository that may be
considered:

– Building SOA applications with reusable assets: Reusable assets, recipes,
and patterns

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-
reuse1/

– Reusable Asset Specification Repository for Workgroups

http://www.alphaworks.ibm.com/tech/rasr4w

� Solution design

This is the final step in the design process. The use of model driven design
will enable you to create a comprehensive design for your solution. IBM
provides Rational Unified Process® and Unified modelling language (UML)
based tools that has successfully been applied in several industries including
telecommunications. Consult the following resources for more information:

– UML basics: An introduction to the Unified Modeling Language

http://www-128.ibm.com/developerworks/rational/library/769.html

306 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://www.redbooks.ibm.com/abstracts/sg246303.html
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-reuse1/
http://www.alphaworks.ibm.com/tech/rasr4w
http://www-128.ibm.com/developerworks/rational/library/769.html

– Rational UML Profile for business modeling

http://www-128.ibm.com/developerworks/rational/library/5167.html

– Introducing IBM Rational Software Architect

http://www-128.ibm.com/developerworks/rational/library/05/524_rsa
/

– Patterns: Model-Driven Development Using IBM Rational Software
Architect, SG24-7105

11.3.2 SIP Servlets as Web Services

WebSphere Application Server 6.1 converged SIP and HTTP container provides
a simple mechanism to exposing SIP Servlets as Web Services, however care
must be taken to ensure that you do not over engineer solutions with
unnecessary encapsulations. We will discuss a number of scenarios and
suggests best practices from SIP Web Services stand point.

Invoking BPEL from SIP Servlets
The SIP Servlets are invoked from User Agent clients and during the execution
of servlets, BPEL flows are invoked. Either during or at the completion of a BPEL
flow, additional SIP communication with the SIP User agent client is required.
Here are two approaches for realizing the SIP communication with the SIP User
agent client:

� Web Service interface

The BPEL could invoke a SIP Servlet through a Web Service interface, and
communicate either on a different dialog from the original, or ensure that the
same dialog is utilized. Figure 11-4 on page 308 shows an illustration of this
option.

Additional logic may be required in the User Agent client to correlate the two
dialogs, if that is the case, then the use of this option is discouraged.

 Chapter 11. Designing IMS services 307

http://www-128.ibm.com/developerworks/rational/library/5167.html
http://www-128.ibm.com/developerworks/rational/library/05/524_rsa/

Figure 11-4 Unrequired SIP Servlet exposed as a Web service

� SIP Servlet pass-through

In general, the recommendation would be for the BPEL to return to the calling
SIP Servlet relevant information such that it can communicate with the User
Agent client on behalf of the BPEL and if required the SIP Servlet can pass
data back to the BPEL flow. An illustration of this is shown in Figure 11-5 on
page 309.

WebSphere
Application

Server

WebSphere
Application

Server

SIP
Enabled

Application

SIP
Enabled

Application

Web Service
SIP Enabled
Application

Web Service
SIP Enabled
Application

SIP
User
Agent

SIP
User
Agent

HTTP/JMS

WebSphere Process ServerWebSphere Process Server

BPELBPEL

HTTP/JMS HTTP/JMS

SIPSIP X

308 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 11-5 Preferred architecture for SIP to BPEL communication

BPEL communication with SIP enabled application
In this scenario, the BPEL process is started via another SIP Servlet or an
external mechanism such as a Web Service. The SIP enabled application
required by the BPEL flow is completely independent to the calling entity and
does not require any direct interaction with any existing SIP dialogs. A real life
example would be a BPEL flow that requires interaction with a SIP enabled
Presence Server to retrieve status information. In this instance it is suggested

Note: As with all guidelines there are exceptions and if the BPEL flow was to
include Human Tasks or other long term processing, and the average
processing time is over 10 seconds (use only as a rough guideline), then it is
reasonable to suggest that the original SIP dialog may be closed and a new
dialog establish when the BPEL process is ready for SIP communication to
occur.

WebSphere
Application

Server

WebSphere
Application

Server

SIP
Enabled

Application

SIP
Enabled

Application

SIP
User
Agent

SIP
User
Agent

HTTP/JMS

WebSphere Process ServerWebSphere Process Server

BPELBPEL

HTTP/JMS HTTP/JMS

SIP

 Chapter 11. Designing IMS services 309

that the SIP Servlet be encapsulated as a Web Service and invoked directly by
the BPEL. An illustration of this architecture is shown in Figure 11-6.

Figure 11-6 BPEL communication with a SIP enabled application

The above scenarios focus on BPEL invoking SIP Web Services, however it is
common to have SIP Web Services exposed on an Enterprise Service Bus for
any Web Service consumer, in that situation it is unlikely that a SIP dialog would
already exist, and simply exposing the SIP Servlet as a Web service is
recommended.

Note: If the BPEL was invoked by a SIP Servlet then the Web Services
encapsulated SIP Servlet called by the BPEL should have no direct
implications on the existing SIP sessions between the server and User Agent
client.

WebSphere
Application

Server

WebSphere
Application

Server

SIP
Enabled

Application

SIP
Enabled

Application

Web Service
SIP Enabled
Application

Web Service
SIP Enabled
Application

SIP
User
Agent

SIP
User
Agent

HTTP/JMS

WebSphere Process ServerWebSphere Process Server

BPELBPEL

HTTP/JMS

SIP

SIP
Enabled

Application

SIP
Enabled

Application

SIP

SIP

HTTP/JMS

310 Developing SIP and IP Multimedia Subsystem (IMS) Applications

11.3.3 Deciding when to use BPEL

BPEL provides a powerful mechanism for creating dynamic flows that can span
people, systems, applications, tasks, rules, and the interactions among them. To
realize the full benefits of BPEL is important to understand when to use BPEL
and when other options many be more appropriate. The following list provide
considerations you should take into account when developing services to
determine if BPEL is appropriate:

� Latency

BPEL is a powerful tool, however there are some latency issues that need to
be considered before recommending its use in a service. If the expectation is
for a sub-second end to end response then it is unlikely that BPEL would
meet these requirements. This is due to the fact that other components within
the architecture consume several hundred milliseconds, leaving BPEL with
little time for processing. Therefore the overhead related to BPEL would not
be suitable for such low latency applications. If the end to end response time
of the application is in the order of several seconds then BPEL fits extremely
well into this solution and can provide substantial benefits. In some countries
there are legal requirements regarding the time taken to establish a call,
however in other situations such as text messaging it is common to wait
several seconds for the service to complete. The latency of BPEL has to be
evaluated on a service by service basis depending on the expectation.

� Number of Web Services involved

Due to the exciting capabilities of BPEL there is the misconception that all
IMS services must utilize BPEL specially if Web Services is required. If there
are multiple Web Services that need orchestration then BPEL is the best
option to accomplish this, however if a single Web service needs to be
invoked for backend integration then it may be more straightforward to call
this Web service directly from the SIP Servlet code.

� Future modifications

If the logic for a given service is likely to be modified regularly in the future for
further enhancements, in particular the Web Service orchestration logic. It is
sensible to consider using BPEL even if there is only one Web Service when
the service is initially created. This is due to WebSphere Integration
Developer and visual tools available for modifying BPELs.

� Human Tasks

WebSphere Process Server provides extensive support for human tasks. If
integration of a SIP initiated process requires human tasks it may be
appropriate to consider using WebSphere Process Server within the solution.

 Chapter 11. Designing IMS services 311

11.3.4 Choosing ESB Software

IBM currently offers a number of Enterprise Service Bus (ESB) products that can
be integrated into an IMS Service Plane solutions. The following are some ESB
products and the recommendations regarding what best fits into the IMS Service
Plane architecture:

� WebSphere Enterprise Service Bus (WESB)

WESB is designed to provide the core functionality of an ESB for a
predominantly Web Services based environment. It is built on WebSphere
Application Server, which provides the foundation for the transport layer.
WebSphere Enterprise Service Bus adds a mediation layer based on Service
Component Architecture (SCA) programming model on top of this foundation
to provide intelligent connectivity. If you have a lot of Web Services in your
environment, WebSphere Enterprise Service Bus is likely to be the product to
use.

� WebSphere Message Broker

WebSphere Message Broker provides an advanced ESB with advanced
integration capabilities such as universal connectivity and any-to-any
transformation for data-centric deployments. It can handle services
integration as well as integration with non-services applications. WebSphere
MQ provides the transport backbone for messaging applications. Typically,
customers who need high throughput product in a message-centric
environment should use WebSphere Message Broker.

For further reading, consult these resources:

� Getting Started with WebSphere Enterprise Service Bus V6, SG24-7212

� Enabling SOA Using WebSphere Messaging, SG24-7163

11.4 Sample application design

In this section we introduce an IMS sample application called FindHelp. We
present the specification from a business perspective, an end-user perspective
as well as from an IT perspective and discuss the design of the sample
application.

11.4.1 Objectives of the sample application

The FindHelp application design covers all major elements of an IMS service
architecture. The design will demonstrate the following:

312 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� How SIP Servlets access IMS enablers such as the Presence service and the
Group List service.

� How SIP Servlet interact and integrate with process choreography.

� How to choreograph service enablers such as Location, Charging and Call
Control services using BPEL processes.

11.4.2 The business scenario

The FindHelp sample service involves three parties:

� A subscriber

The subscriber is entitled to use the FindHelp service, because he has
subscribed to it.

� Service provider

A telecommunications service provider, who offers the FindHelp service.

� Lock service company

A company that provides lock services and has setup agreement with the
service provider to be included in the FindHelp service.

Here is the description of the scenario:

� A lock service company offer locksmith services across a certain region. Their
staff are highly skilled technicians, can open car, home or any other door for
customers who have either misplaced, stolen or broken keys. As a way to
reach out to potential clients ACME has set up an agreement with the
regional service provider to be listed in the service provider’s FindHelp
service.

� Using an application that is provided by the service provider, the ACME
administrator defines a Lock Out Services topic and assigns his best
technicians to this topic.

� ACME provides all its technicians with SIP enabled mobile devices, so that
they can publish their current presence status.

� Bob, who is a subscriber of the service provider, comes home late. While
trying to open the door of his apartment, Bob breaks the door key.

� Using his mobile phone Bob starts the FindHelp service and selects Lock Out
Services.

� The FindHelp service identifies Jack, who is member of the LockOutServices
group and who is currently active and is actually just around the corner of
Bob’s apartment.

� The FindHelp service establishes a call between Bob and Jack.

 Chapter 11. Designing IMS services 313

� After trying to support Bob by the phone, Jack finally decides to drive to Bob’s
apartment to solve the problem.

11.4.3 The use case model

Figure 11-7 on page 315 shows the use case diagram of the FindHelp
application.

The human actors that interact with the application are:

� Administrator

The administrator works for the Lock service company. His role is to maintain
the FindHelp topics and assign technicians to these topics.

� Technician

The technician provides the requested service. He is contacted by the
A-Party to provide help for a certain problem.

� A-Party

The A-Party is a subscriber of a communication service provider. He uses the
FindHelp application to get contact to a technician.

314 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 11-7 FindHelp Use Case Diagram

The FindHelp application also interacts with a set of enabling services:

� Group List service

The Group List service provides means for administrating and querying
groups and members.

� Presence service

The Presence service provides presence information for a given address or
group of addresses.

� Charging node

The charging node collects charging relevant data.

� Location service

The location service provides location and distance information of mobile
subscribers.

 Chapter 11. Designing IMS services 315

� ThirdParty Call Control service

The ThirdParty Call Control service provides means to establish or tear down
calls between two subscribers.

The use cases
The main use cases of the FindHelp application are described as follows:

� Administer technicians

This is the administration use case. The lock service company that wants to
offer their services through the FindHelp service and as a result needs to
maintain topics such as homecare, lockout service and pest control. It
assigns technicians to these topics. It also maintains the profile of each
technician.

This use case is realized by the administration client that is part of the IBM
WebSphere Group List Server Component. Refer to 13.3, “Executing the test
scenarios” on page 466 for more detailed description.

� Register Presence

The technician needs to publish his actual presence status. This use case is
not implemented. However we simulate the functionality by using a SIPp
script. Refer to 13.3, “Executing the test scenarios” on page 466 for a more
detailed description.

� FindHelp

This use case is described in this and subsequent chapters.

� Extensions

The core FindHelp application may in future be extended by some additional
features. Here are two examples:

– Web access to the application

Would enable A-Party to invoke the FindHelp application from a
web-browser. This extension would introduce the use of the IBM
WebSphere Telecom Web Services Server as B2B access gateway. It also
would introduce the use of the converged container for SIP and J2EE
servlets.

– Provide directions to A-Party to technician

The FindHelp application could interact with a mapping/routing service for
directions from the technician to the A-Party. This information could be
send to the technician.

316 Developing SIP and IP Multimedia Subsystem (IMS) Applications

11.4.4 The component model

A number of components need to collaborate together to provide the functionality
required by the FindHelp use case. Figure 11-8 shows a static view of the
component interaction model. In 11.4.5, “Component flow” on page 322 the
dynamic view of the component interaction is provided.

Figure 11-8 Component Diagram

The following outlines the key functionality and responsibilities of the
components and the implementation:

� PresenceClient component

– Responsibilities

Notify the Presence Service about changes of the device’s presence
status.

 Chapter 11. Designing IMS services 317

– Collaborations

Send SIP messages to the Presence Service.

– Implementation

For our sample we use a simulator (SIPp). The sequence of SIP
messages is captured in a script.

In a production environment this component would reside on, for example,
a mobile device or represented by Web application.

– Reference

13.1, “Overview of the test environment” on page 440

� FindHelpDialog component

– Responsibilities

• Presents a list of topics

• Implements the SIP client for the service

– Collaborations

Invokes the FindHelp service by sending a SIP message.

– Implementation

For our sample we use a simulator (SIPp). The sequence of SIP
messages is captured in a script.

In a production environment this component would reside on e.g. a mobile
device or represented by Web application.

– Reference

13.1, “Overview of the test environment” on page 440

� VoiceClient component

– Responsibilities

Set up a voice communication channel.

– Collaborations

Receives SIP messages from the Third Party Call Control to setup a voice
session.

– Implementation

For our sample we use SIP softphones like X-Lite and SipXphone.

In a production environment this component would reside on either a SIP
phone or a mobile device.

318 Developing SIP and IP Multimedia Subsystem (IMS) Applications

– Reference

13.2.4, “Device client setup” on page 459

� FindHelpSipServlet component

– Responsibilities

• Retrieve the closest subscriber

• Establish a call between the A-party and the closest subscriber

• Create a charging event

– Collaborations

• Receives SIP messages from the FindHelpDialog

• Sends SIP messages to the FindHelpDialog

• Start the BPEL process by invoking a Web service, which is provided
by the FindHelpBpelProcess

• Send SIP messages to the Presence service to retrieve the list of
present subscribers

• Receive SIP messages from the Presence service

– Implementation

Implemented as a siplet using the WebSphere Application Server Toolkit.
The execution environment is the WebSphere Application Server V6.1.

– Reference

12.2, “SIP Servlet development” on page 342

� FindHelpBpelProcess component

– Responsibilities

• Resolve a topic to a list of subscribers, whose present status is active

• Implement the FindHelp specific SIP state machine

• Trigger the BPEL process

– Collaborations

• Provides a Web service, that is called by the FindHelpSipServlet

• Invokes a Web service, that is provided by the Location Service, to get
location and distance of subscribers

• Invokes a Web service, that is provided by the Third Party Call Control,
to establish a call

• Invokes a Web service, that is provided by the DiameterRfService, to
create a charging event

 Chapter 11. Designing IMS services 319

– Implementation

Implemented as a BPEL process using WebSphere Integration Developer.
The execution environment is the WebSphere Process Server.

– Reference

12.3, “BPEL development” on page 361

� Group list Service component

– Responsibilities

Manage groups and members of groups.

– Collaborations

• Receives SIP messages from the Presence Service

• Sends SIP messages to the Presence Service

• Sends XCAP over Http messages to the Presence Service

– Implementation

IBM WebSphere Group List Server Component.

– Reference

8.5.1, “The role of Group List Management” on page 187

� Presence Service component

– Responsibilities

Manage the presence status of subscribers.

– Collaborations

• Receives SIP messages from the FindHelpSipServlet to get all active
members for a group

• Sends SIP messages to the FindHelpSipServlet

• Sends SIP messages to the Group list Service to resolve the group to
its members

• Receives SIP messages from the Group list Service

• Receives XCAP over Http messages from the Group list Service

• Receives SIp messages from the PresenceClient about the presence
status

– Implementation

IBM WebSphere Presence Server.

– Reference

8.4.2, “The Presence Management enabler” on page 184

320 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� Location Service component

– Responsibilities

• Determine the current location of a subscriber in terms of geographical
longitude and latitude)

• Calculate the distance between the current location of subscriber and a
given geographical location

– Collaborations

Provides a Web service, which is invoked by the FindHelpBpelProcess.

– Implementation

For our sample we have developed a location simulator. It is available in
the additional material of this book. In a production environment this would
be a commercially available Location Server.

– Reference

12.5, “The location simulator” on page 435

� DiameterRfService component

– Responsibilities

Diameter offline charging client.

– Collaborations

• Provide a Diameter Rf Web service interface, which is invoked by the
FindHelpBpelProcess

• Invoke the Diameter Rf interface of the ChargingCollection Function

– Implementation

IBM Connector Diameter component.

– Reference

8.3.2, “Diameter services” on page 178

� ChargingCollectionFunction component

– Responsibilities

• Collect charging data

• Generate charging records

– Collaborations

Provides a Diameter Rf interface, that is called by the DiameterRfService.

– Implementation

 Chapter 11. Designing IMS services 321

We have implemented a CCF simulator, which is available in the additional
material of this book. In a production environment this component is
implemented by a commercially available charging collection function.

– Reference

13.1, “Overview of the test environment” on page 440

ThirdParty Call Control component

– Responsibilities

• Establish a call between two subscribers

• Tear-down a call

– Collaborations

• Provides the Parlay X Third Party Call Control Web service, that is
invoked by FindHelpBpelProcess

• Send SIP messages to the VoiceClient to establish a voice session

• Receive SIP messages from the VoiceClient

– Implementation

IBM WebSphere Telecom Web Services Server.

– Reference

8.6, “Telecom Web Services Server” on page 193

11.4.5 Component flow

The dynamic component interaction and message flows that make up the
FindHelp application is presented in this section. Figure 11-9 on page 323 shows
dynamic interactions between all the components in this scenario. Each
interaction is labeled with a number ranging from 1 to 17. The numbers indicate
different steps in the interaction. Figure 11-10 on page 326, Figure 11-11 on
page 327 and Figure 11-12 on page 328 provide the component interaction
diagrams for the scenario.

322 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 11-9 Component interaction for the FindHelp scenario.

1. Technician(s) publishes his/her availability for the LockOutService by sending
a SIP Publish message to the Presence Server. The message contains the
state information about the technician.

2. A-Party invokes the FindHelp service on his device. He selects LockOut
Services from the list of available topics proposed by the service provider,
and clicks OK. The FindHelp Dialog application running in the A-Party’s
device initiates a SIP session with the FindHelp service by sending a SIP
INVITE request message containing the topic selected by the A-Party, i.e.
LockOutServices. The FindHelp service sends back a provisional SIP “100
Trying” response back to the device, followed by a SIP “200 OK” success
response.

SIP SimulatorSIP Simulator

SIP
Phone

BPEL ChoreographyBPEL Choreography

FindHelpFindHelp

Group
List

Server

Group
List

Server
Presence

Server
Presence

Server
FindHelp

SIP
Servlet

FindHelp
SIP

Servlet

Simulated
Location
Server

Simulated
Location
Server

Diameter
Rf

Diameter
Rf

Third
Party Call
Control

Third
Party Call
Control

Caller

SIP
Phone

Technician

CallerCallerTechnicianTechnician

131 131 131 131

77

6655

44 33

2211

Simulated
CCF

Simulated
CCF

1010 88 99 1414 1717 1212

161615151111

Note: It is assumed that the A-Party has already subscribed to the FindHelp
service with the service provider, and therefore is allowed to access the
service. It is also assumed that A-Party’s and technician(s) devices are
already powered-on and registered to the IMS Registration Subsystem (likely
the CSCF). Finally only the successful use case is explained (at least one
technician is available).

 Chapter 11. Designing IMS services 323

3. The FindHelp service subscribes to the presence status of the technicians in
charge of the LockOutServices by sending a SIP SUBSCRIBE request to the
Presence Server containing the corresponding group URI in the request in
the “To” header of the SIP request. The Presence Server sends back a SIP
“200 OK” success response.

4. The Presence server checks the REQUIRE header to see if the subscription
may relate to a resource-list entity. If it is the case, then it checks if there are
already previous subscription(s) for this group. If there are, then the current
members information is used and a NOTIFY response is sent back to the
device client with all the member presence information contained in a MIME
Multipart message format. Otherwise, Presence Server sends a SIP
SUBSCRIBE to the Group List Management Server since starting this point it
wants to be notified about any change to the group content.

5. The Group List server sends back a SIP “200 OK” success response, then a
SIP NOTIFY message containing the XCAP URL of the group. The Presence
Server utilizes the XCAP protocol to retrieve the resource-list document
containing the group members from the GLMS.

6. The Presence server composes a SIP NOTIFY requests containing current
state of all group members, and sends the message to the FindHelp Service.
Until subscription to the FindHelp service expires, the Presence Server will
send a SIP NOTIFY request to the FindHelp service each time a change in
either group content or group member state occurs.

7. The FindHelp service analysis the SIP NOTIFY request received from the
Presence Server and computes a list of available technicians. It then invokes
the FindHelp BPEL business process (implemented as a Web Service) and
provides the identity of the A-Party and the list of available technicians as
parameters to the request.

8. The FindHelp BPEL process starts a number of interactions with the Location
Service:

– A first interaction is started from the BPEL process to the Location Service
to determine the current location of the A-Party. A-Party’s identity is
provided as parameter to the request.

9. Depending to the number N of available technicians, (N-1) interactions is
(are) started from the BPEL process to the Location Service to determine the
distance between A-Party and the technician. Location Service sends back
the distance information for each technician to the FindHelp BPEL process.

10.The FindHelp BPEL process computes the nearest technician, and sends
back the technician identity to the FindHelp Service.

11.The FindHelp service computes a SIP INFO message containing the
technician’s identity and sends the message to the A-Party’s device client.
this information is displayed on A-Party’s device indicating that a SIP-Voice

324 Developing SIP and IP Multimedia Subsystem (IMS) Applications

call is being established with the technician. A-Party UA acknowledges the
INFO message. A SIP BYE Message is sent by the FindHelp Service to close
the SIP Session.

12.The FindHelp BPEL process invokes the ThirdParty Call Control component
in order to establish a SIP voice call between A-Party and the technician. To
do so it uses the Parlay X Web Service Interface.

13.The ThirdParty Call Control component, acting as a controller, establishes
both legs of the voice call session by sending first SIP INVITE message to the
the technician’s User Agent (UA). Technician's phone rings, and technician
answers. This results in a 200 RC OK that contains an offer, let’s call it
offer1. The controller needs to send an answer using a SIP ACK request, as
mandated by RFC3261. To obtain the answer, it sends offer1 to A-Party
using a SIP INVITE message. A-Party’s phone rings. When he answers, the
200 OK contains the answer to offer1, let’s call it answer1, The controller
sends an ACK to A-Party, and then passes answer1 to the technician by
sending an ACK message to the technician’s UA. Because the offer was
generated by the technician’s UA, and the answer generated by A-Party’s UA,
the actual media session is between the technician and A-Party UAs. Refer to
RFC3725 for more details and options for ThirdParty Call Control.

14.The FindHelp BPEL process invokes the DiameterRfService component
using the Web Service Interface to charge A Party.

15.An Accounting Event is sent to the CCF simulator using Diameter protocol.

16.The CCF returns back an acknowledgment.

17.The DiameterRfService WS returns back a positive answer to the FindHelp
BPEL process. The BPEL process is ended.

 Chapter 11. Designing IMS services 325

Figure 11-10 FindHelp Component Interaction Diagram (1/3)

Technician Technician A-PartyA-Party FindHelp
SP

FindHelp
SP

Presence
Server

Presence
Server GLSGLS

*subscribe(group)

200-OK

200-OK

NOTIFY (XCAP_URI)

200-OK

INVITE(Topic)

100-Trying

ACK

*subscribe(group)

200-OK

PUBLISH (Availability)

NOTIFY(Multipart document)

XCAP_Get group resource-
service

200-OK

6

5

4

3

2

1

200-OK

326 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 11-11 FindHelp Component Interaction Diagram (2/3)

FindHelp
BPEL

FindHelp
BPEL

FindHelp
SIP

FindHelp
SIP A-PartyA-Party Location

Server
Location
Server TPCCTPCC Diameter

Rf
Diameter

Rf
WS-Start Business
Process(List)

WS:LOCATE_
A-Party)

Result

INFO(Call in
Progress with
Technician)

200-OK

WS:LOCATE_
Distance

Result
200 OK(Call in
Progress with
Technician)

CCFCCF

End of BPEL process

Start of BPEL
process

9

15
16

17

7

8

10

11

200-OK 12
200-OK

WS:PARLAY-X:3PCC(Bob,John)

BYE

200-OK
14 WS:ACCOUNTING EVENT(Bob, Find Techie)

CER

ACK

 Chapter 11. Designing IMS services 327

Figure 11-12 FindHelp Component Interaction Diagram (3/3)

11.5 SIP Servlet design

The SIP Servlet is the central control entity within the service. It acts as the
control point for the device client, Presence server (including the Group List
server) and the BPEL process running in Process server. The call flow is shown
in Figure 11-13 on page 329.

A-PartyA-PartyTechnician Technician

Call Established (RTP)

TPCCTPCC

100-Trying

INVITE (A-Party URI)

180-Ringing

200-OK

INVITE (A-Party URI)

100-Trying

180-Ringing

200-OK

ACK

ACK

BYE

200-OK

BYE

200-OK

13

328 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 11-13 SIP and Web Service call flow for the SIP Servlet

These steps are a walkthrough of the call flow:

1. A SIP INVITE invokes the SIP Servlet. The SIP message includes an XML
payload and details the group that the user requires assistance for.

An example of the INVITE is presented in Example 11-1.

Example 11-1 Sample INVITE

INVITE sip:FindHelp@127.0.0.1:5065 SIP/2.0
Via: SIP/2.0/UDP 9.42.170.160:5068;branch=z9hG4bK4F58B3359B841
From: sipp <sip:sipphone@9.42.171.130>;tag=1

SIP
Servlet

SIP
ServletSIPpSIPp

1

Presence
Server

Presence
Server

Process
Server

Process
Server

3

4

5

INVITE with XML body

100-Trying

180-Ringing

200-OK

ACK
2

Subscribe

200-OK

Notify

200-OK

Web Service Invocation with group data

Web Service responses with contact
6

Info with XML body

200-OK

BYE

200-OK

7

Note: In the sample scenario we implemented in this redbook, there is no
integrated device client. Instead, it is simulated with a SIPp script and
separate SIP phone. This means that the third party call established via the
BPEL will need to have the SIP phone URI and not the SIPp URI. To allow
this behavior the INVITE from address will correspond to the SIP phone,
while the contact header will match the SIPp URI.

 Chapter 11. Designing IMS services 329

To: sut <sip:FindHelp@127.0.0.1:5065>
Call-ID: 1-6964@9.42.170.160
Cseq: 1 INVITE
Contact: sip:sipp@9.42.170.160:5068
Max-Forwards: 70
Subject: FindHelp
P-Charging-Vector:
icid-value=294_1124116770286@47.135.114.87;orig-ioi=scscf1@homedomain.c
om
Content-Type: text/xml
Content-Length: 112

<?xml version="1.0" encoding="UTF-8"?>
<FindHelp>
<group>sip:mytechies@itso.ral.ibm.com</group>
</FindHelp>

In the above example the SIP phone URI is sip:sipphone@9.42.171.130 and
the SIPp is running at sip:sipp@9.42.170.160:5068. Once the message is
received by the servlet the XML body of the INVITE is parsed to retrieve the
SIP URI that corresponds to the group the end user requires assistance from
for example sip:mytechnies@itso.ral.ibm.com.

2. To register a subscription to the Presence server for a certain URI the SIP To
header of a subscribe message is used to identify the user/group the
subscription relates to and the SIP URI for routing to the Presence server. If
the subscription is regarding a group then the supported header must include
eventlist. This informs the presence server that the request may be
regarding a group and it should consult the group list server. The sample
application only requires the current presence information as one notify and
any future changes do not need to be forwarded. To accomplish this behavior
the expires header is set to 0 notifying the Presence server that only a
snapshot is required. An example of the SUBSCRIBE message is presented
in Example 11-2.

Example 11-2 Sample SUBSCRIBE

SUBSCRIBE sip:service@localhost:5063 SIP/2.0
From: "sut"
<sip:FindHelp@127.0.0.1>;tag=0718355665374052_local.1150309179673_33_71
To: <sip:mytechies@itso.ral.ibm.com>
Call-ID: 2020986185856275@9.44.220.56
Max-Forwards: 70
CSeq: 2 SUBSCRIBE
Event: presence
Supported: eventlist

330 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Accept: application/pidf+xml, application/rlmi+xml, multipart/related,
amultipart/signed, application/pkcs7-mime
Expires: 0
Via: SIP/2.0/UDP 9.44.220.56:5065;branch=z9hG4bK96810741518611
Contact: <sip:9.44.220.56:5065;transport=udp>
Content-Length: 0

3. The Presence Server will communicate with the Group List Server (GLS) to
retrieve group information. On receipt of the group data from the GLS it
queries the presence information for the members of the group and
composes a single response. The response is a multipart mime, with the
initial section detailing the group information and subsequent sections
providing the presence information for each member of the group for whom
valid data exists. An example of a NOTIFY is shown in Example 11-3.

Example 11-3 Sample NOTIFY

NOTIFY sip:9.44.220.56:5065;transport=udp SIP/2.0
From:
<sip:mytechies@itso.ral.ibm.com>;tag=47328183334644003_local.1150231806
857_194_189
To: "sut"
<sip:FindHelp@127.0.0.1>;tag=0718355665374052_local.1150309179673_33_71
Call-ID: 2020986185856275@9.44.220.56
Max-Forwards: 70
CSeq: 2 NOTIFY
Content-Type:
Multipart/Related;type="application/rlmi+xml";start="mytechies%40itso.r
al.ibm.com";boundary="boundary-112"
Content-Length: 1359
Event: presence
Subscription-State: terminated
Require: eventlist
Via: SIP/2.0/TCP 9.44.220.56:5063;branch=z9hG4bK991449639733644
Contact: <sip:9.44.220.56:5063;transport=udp>

--boundary-112
Content-ID: "mytechies@itso.ral.ibm.com"
Content-Type: application/rlmi+xml

<?xml version="1.0" encoding="UTF-8"?><list
xmlns="urn:ietf:params:xml:ns:rlmi"
cid=""mytechies@itso.ral.ibm.com"" fullstate="true"
uri="mytechies@itso.ral.ibm.com" version="0"><resource
uri="jochen@itso.ral.ibm.com"/><resource

 Chapter 11. Designing IMS services 331

uri="callum@itso.ral.ibm.com"><instance cid="callum@itso.ral.ibm.com"
id="1" state="active"/></resource><resource
uri="cameron@itso.ral.ibm.com"/><resource
uri="rebecca@itso.ral.ibm.com"><instance cid="rebecca@itso.ral.ibm.com"
id="1" state="active"/></resource><resource
uri="phil@itso.ral.ibm.com"/></list>
--boundary-112
Content-ID: callum@itso.ral.ibm.com
Content-Type: application/pidf+xml

<?xml version="1.0" encoding="UTF-8"?>
<presence entity="callum@itso.ral.ibm.com"
xmlns="urn:ietf:params:xml:ns:pidf">
<tuple id="1234560001">
<status>
<basic>open</basic>
</status>
<contact>sip:callum@9.42.171.135</contact>
</tuple>
</presence>

--boundary-112
Content-ID: rebecca@itso.ral.ibm.com
Content-Type: application/pidf+xml

<?xml version="1.0" encoding="UTF-8"?>
<presence entity="rebecca@itso.ral.ibm.com"
xmlns="urn:ietf:params:xml:ns:pidf">
<tuple id="1234560002">
<status>
<basic>open</basic>
</status>
<contact>sip:rebecca@9.42.171.135</contact>
</tuple>
</presence>

--boundary-112

4. Parsing of the NOTIFY body is completed by the SIP Servlet to determine
what members of the group are currently available. This information is then
submitted to Process server with the To address of the INVITE (Step 1). As
the Third Party Call Control logic does not communicate with a Proxy for
name resolution, it is not possible to pass xxx@itso.ral.ibm.com to Process
server and successfully resolve to a valid endpoint. Therefore the content of
the contact xml tag is used as the valid SIP endpoint for establishing the third

332 Developing SIP and IP Multimedia Subsystem (IMS) Applications

party call control. It is critical that a SIP phone is available at this SIP endpoint
to allow the third party call control logic to establish a call. An example Web
service request to the Process Server is shown in Example 11-4.

Example 11-4 Web Service Request Example

<?xml version="1.0" encoding="UTF-8" ?>
<soapenv:Envelope xmlns:q0="http://FindHelp/FindHelpInterface"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<q0:invokeCallBack>

<addresses>
<address>sip:rebecca@9.42.171.135</address>
<address>sip:callum@9.42.171.135</address>

</addresses>
<originator>sip:sipphone@9.42.171.130</originator>

</q0:invokeCallBack>
</soapenv:Body>

</soapenv:Envelope>

5. The Process Server will query the location server to determine the closest
person from the available resources. It then returns the SIP endpoint to the
calling SIP Servlet. Further details regarding the behavior within the Process
server can be found in 12.3, “BPEL development” on page 361. A Web
service response from the Process server is shown in Example 11-5.

Example 11-5 Web Service Response Example

<soapenv:Envelope
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header />
<soapenv:Body>

<interface:invokeCallBackResponse
xmlns:interface="http://FindHelp/FindHelpInterface">

<status>OK</status>
<callee>sip:callum@9.42.171.135</callee>

</interface:invokeCallBackResponse>
</soapenv:Body>

</soapenv:Envelope>

 Chapter 11. Designing IMS services 333

6. The response from the Process Server invocation is packaged into a SIP
INFO message and sent to the originating SIPp client to be displayed to the
end user. An example of the INFO can be seen in Example 11-6.

Example 11-6 INFO Example

INFO sip:sipp@9.44.220.56:5068 SIP/2.0
From: "sut"
<sip:FindHelp@127.0.0.1:5065>;tag=5359090010121218_local.1150309179673_
28_60
To: "sipp" <sip:sipp@9.42.171.130>;tag=1
Call-ID: 1-4476@9.44.220.56
Max-Forwards: 70
CSeq: 2 INFO
Content-Type: text/xml
Content-Length: 82
Via: SIP/2.0/UDP 9.44.220.56:5065;branch=z9hG4bK577258802603871

<?xml version="1.0"
encoding="UTF-8"?><FindHelp><ringing>sip:callum@9.42.171.135</ringing><
/FindHelp>

7. The SIPp client will display the SIP address to the caller and respond with a
200 OK. This notifies the SIP Servlet that the dialog can be shutdown. A SIP
BYE message is generated by the server and sent to the client. An example
of the SIP message can be seen in Example 11-7.

Example 11-7 Example BYE message

BYE sip:sipp@9.44.220.56:5068 SIP/2.0
From: "sut"
<sip:FindHelp@127.0.0.1:5065>;tag=5359090010121218_local.1150309179673_
28_60
To: "sipp" <sip:sipp@9.42.171.130>;tag=1
Call-ID: 1-4476@9.44.220.56
Max-Forwards: 70
CSeq: 3 BYE
Via: SIP/2.0/UDP 9.44.220.56:5065;branch=z9hG4bK159275582063324
Content-Length: 0

334 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 11-14 Class Diagram for the SIP Project

Note: The discussion in this section focused on the SIP Servlet
implementation. It does not address the process for creating XML parsers and
Web Service Java clients. Several publications have already covered these in
detail. The following Web sites and URLs that provide relevant further
information:

� All about JAXP, Part 1

http://www-128.ibm.com/developerworks/xml/library/x-jaxp/

� All about JAXP, Part 2

http://www-128.ibm.com/developerworks/xml/library/x-jaxp2/

� Invoking Web Services with Java clients

http://www-128.ibm.com/developerworks/webservices/library/ws-java
client/

All the source code for parsing and Web service code is included in the
additional material in siputils.jar, and an illustration of the dependencies is
shown in Figure 11-14 on page 335.

 Chapter 11. Designing IMS services 335

http://www-128.ibm.com/developerworks/xml/library/x-jaxp/
http://www-128.ibm.com/developerworks/xml/library/x-jaxp2/
http://www-128.ibm.com/developerworks/webservices/library/ws-javaclient/

The FindHelp SIP Servlet uses three class within the utilize package:

� ParseSIPMessage

When a multipart mime is received by the SIP Servlet a byte array is returned
from the getContent method of the SipServletMessage class. The parsing of
this method has to be handled manually by the application and therefore this
class is used to separate the multipart mime into an array of XML strings for
further processing.

� ParseXML

ParseXML is used to parse the XML body of the INVITE to determine the SIP
URI of the group to be contacted. This same class is utilized to parse the
body FindHelpInterfaceProxy of the NOTIFY message from the presence
server.

� FindHelpInterfaceProxy

Provides a Java interface to invoke the BPEL. Assuming that the WSDL is not
modified, this class should provided the functionality required including
configuration of the service endpoint. However if the parameter names or
methods of the WSDL representing the process server service is modified
then a new Java client will be required.

11.5.1 BPEL design

The BPEL process exports a Web service that is invoked by the SIP Servlet. The
invocation triggers the business process, which sequentially executes five
process steps. Figure 11-15 on page 337 specifies the interactions between the
BPEL process and the enabling services.

336 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 11-15 FindHelp BPEL Process Interaction Diagram

1. The process is started by the SIP servlet invoking the invokeCallBack
operation. The Sip servlet passes the SIP address of the originator of the
service and a list of SIP addresses of available technicians to the process.

2. The process invokes the getTerminalLocation operation to locate the
originating (A-) party. The location service returns the geographical longitude
and latitude of the A-party’s current location.

3. Loop through the list of SIP addresses to determine for each address the
distance between the addressee’s location and the A-Party. Calculate the
address, which is closest to the originator.

4. Return the closest address to the SIP servlet.

5. Invoke the makeCall operation of the ThirdPartyCallControl Web service to
establish a call between the originator and the closest address.

6. Call the EventCharging Web service to charge for the use of the FindHelp
service.

 Chapter 11. Designing IMS services 337

Applying the above to the BPEL principles described in 6.3, “Components” on
page 123 we can now design a first assembly diagram (see Figure 11-16).

Figure 11-16 Module design

From the assembly diagram we can see, that we need to specify four interfaces:

� One Export Interface, to expose the service, which is provided to the SIP
servlet.

� Three Import Interfaces, to describe the services required from the enablers.

Interfaces
The following interfaces are provided or required by the FindHelp module.

� FindHelpInterface

This interface models the invocation interface for the FindHelp process.

It provides a single operation invokeCallBack. Section 12.3.3, “Create the
interface for the BPEL process” on page 368 shows how to create this
interface.

Table 11-1 FindHelpInterface interface

Operation Parameter type Parameter Data type

invokeCallBack Input addresses AddressesBO

FindHelp
SIP servlet
FindHelp

SIP servlet
FindHelp
Process

FindHelp
Process

FindHelp
SIP servlet
FindHelp

SIP servlet

FindHelp
SIP servlet
FindHelp

SIP servlet

FindHelp
SIP servlet
FindHelp

SIP servlet

MyService
Business

Rule

MyService
Business

Rule

338 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� TerminalLocationImpl

This interface is provided by Location service. It provides three operations,
from which the FindHelp process invokes getTerminalLocation and
getLocation.

Table 11-2 TerminalLocationImpl interface

� ThirdPartyCall

This interface is provided by the Third Party Call Control Parlay X Web
service, which is exposed by the WebSphere Telecom Web Services Server.
Out of the four operations provided by this interface we only use the makeCall
operation.

Table 11-3 ThirdPartyCall interface

Input originator string

Output status string

Output callee string

Operation Parameter type Parameter Data type

getLocation Input uri anyURI

Input requestedAccuracy int

Input acceptableAccuracy int

Output getLocationReturn LocationInfo

getTerminalDistance Input uri anyURI

Input latitude float

Input longitude float

Output getTerminalDistanc
eReturn

int

Operation Parameter type Parameter Data type

makeCall Input parameters makeCall

Output result makeCallResponse

Operation Parameter type Parameter Data type

 Chapter 11. Designing IMS services 339

� DiameterRfService_SEI

The IBM WebSphere Diameter Enabler Component exposes an interface to
generate charging events. Out of the five operations that are provided by this
interface we only use the eventOfflineAcounting.

Table 11-4 DiameterRfService_SEI interface

Operation Parameter type Parameter Data type

eventOfflineAccounti
ng

Input sessionId string

Input recordNumber int

Input userName string

Input acctInterimInterval int

Input destinationRealm string

Input eventTimestamp float

Input originStateID int

Input act Accounting

Output eventOfflineAccount
ingReturn

ACAResults

340 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 12. Implementing the IMS
sample service

This chapter provides detailed descriptions for the development of FindHelp, the
sample IMS service implemented in this redbook. It includes the development of
the SIP Servlet for the FindHelp Service, the creation of the BPEL process using
WebSphere Integration Developer and a location simulator which acts as a
Location server.

This chapter contains the following:

� Implementation overview

� SIP Servlet development

� BPEL development

� The location simulator

12

© Copyright IBM Corp. 2007. All rights reserved. 341

12.1 Implementation overview

In this section, we create the SIP Servlets for the Registrar and LocalProxy. We
also create the business logic for storing mappings between Addresses of
Record provided by a User Agent and the User Agent’s current contact
information

The following steps detail the process for creating the new SIP Project required
for the FindHelp service.

This section describes the implementation completed for the sample service. It is
seperated into three sections:

� SIP Servlet development

Describes the process for creating the SIP Servlet for the FindHelp Service. It
details the steps for creating the sample code using the WebSphere
Application Server Toolkit.

� BPEL Development

Describes the BPEL process using the sample applications and provides
information for creating the process flow within WebSphere Integration
Developer.

� Location Simulator

Describes the implementation of the location simulator at a high level to assist
with debugging.

12.2 SIP Servlet development

The SIP Servlet is the central control entity within the FindHelp service. It acts as
the control point for the device client, The development of the SIP Servlet is
separated into five sections:

� Create a new SIP Project
� Create a new SIP Servlet
� Importing the associated Utility JAR file
� Complete the coding of the SIP Servlet
� Exporting the application for deployment

12.2.1 Create a new SIP project

You can create two different types of projects, a SIP or a Converged Project. You
create a SIP Project when only SIP Servlets will be contained within the project.

342 Developing SIP and IP Multimedia Subsystem (IMS) Applications

And create a Converged Project when both SIP and HTTP servlets are required
in the project. For the FindHelp service, only SIP Servlets are required. The
following steps are for the creation of a SIP Project.

1. If the Application Server Toolkit V6.1 is not already started, select Start → All
Programs → IBM WebSphere → Application Server Toolkit V6.1 →
Application Server Toolkit.

2. Select File → New → Project.

Figure 12-1 Defining a new SIP project within AST

3. Select SIP → SIP Project.

Figure 12-2 Select SIP Project from the New Project wizard

4. Click Next.

5. Define the properties of the new SIP Project.

a. Enter FindHelp as the Project Name.

b. Select WebSphere Application Server v6.1 as the Target runtime.

 Chapter 12. Implementing the IMS sample service 343

6. Click Finish.

Figure 12-3 Defining the properties of the new SIP Project

A new SIP project will be created and you can find the newly created project
under Other Projects → FindHelp.

12.2.2 Create a new SIP Servlet

Having created the SIP Project, you are now ready to create the SIP Servlet for
the FindHelp service. The steps for creating the SIP Servlet are as follows:

1. Right-click the FindHelp application under Other Projects → FindHelp.

2. Select New → Other.

3. Select SIP → SIP Servlet.

4. Click Next.

344 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-4 Select SIP Servlet from the creation wizard

5. In the Specify class file destination window fill in the following:

a. Java Package field: com.ibm.itso

b. Class name: FindHelp

6. Click Next.

 Chapter 12. Implementing the IMS sample service 345

Figure 12-5 Define the SIP Servlet name and package

7. The servlet deployment descriptor specific information dialog will appear
similar to Figure 12-6 on page 347.

346 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-6 Servlet deployment descriptor specific information - add initialization
parameters

8. Click Add beside the initialization Parameters box.

9. In the Initialization Parameters window similar to Figure 12-7 on page 348, fill
in the following values:

a. Name: PresenceServerHostname

b. Value: localhost (or you may the hostname of the presence server)

c. Description: The hostname of the Presence Server

10.Click OK.

 Chapter 12. Implementing the IMS sample service 347

Figure 12-7 Initialization Parameters

11.Repeat Steps 8, 9 and 10 for the following parameters:

Table 12-1 Additional initialization parameters to be created

12.Click Add beside the Mappings box to enter the mapping information.

Name Value Description

PresenceServerPortNumber 5063 Port number for the
presence server

ProcessServerURI http://localhost:9080/Find
HelpWeb/sca/setupcall

The URI of the BPEL
process to be invoked by
the SIP Servlet

Note: You may have to use different values for your environment.

348 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-8 Servlet deployment descriptor specific information

13.In the pop-up menu, select Condition.

14.Fill the Add Mapping Condition window with the following values:

a. Condition: Equal

b. Variable: request.method

c. Value: INVITE

15.Click OK.

 Chapter 12. Implementing the IMS sample service 349

Figure 12-9 Add Mapping Condition for the SIP Servlet

The completed Servlet deployment descriptor specific information window will
appear as in Figure 12-8 on page 349.

16.Click Next.

17.Specify the method stubs to generate by clicking the following method check
boxes:

a. doInvite

b. doNotify

c. doSuccessResponse

18.Click Finish.

350 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-10 Method selection for the SIP Servlet

Import the associated Utility JAR file
The following details the process for importing the utilizes jar file into the new
project, which will enable the SIP Servlet to access the required classes:

1. Expand Other Project from the Project Explorer.

2. Expand the project FindHelp.

3. Right-click src.

4. Select Import from the pop-up menu.

5. Select Archive file.

6. Click Next.

7. Click Browse and navigate to siputils.jar file.

8. Click Open.

9. Click Finish to complete the import.

 Chapter 12. Implementing the IMS sample service 351

Figure 12-11 Importing siputils.jar

12.2.3 Complete the SIP Servlet code

In order to create a fully functional FindHelp SIP Servlet, complete the code
generated by the AST. Here are the steps for completing the FindHelp SIP
Servlet:

1. Open the new FindHelp SIP Servlet:

a. Expand Other Projects → src → com.ibm.itso.

b. Double-click FindHelp.java.

2. There are a number of external classes that are utilized in the SIP servlet and
these need to be added as import statements. Append the list in
Example 12-1 to the current import statements.

Example 12-1 Import statements required

import java.io.ByteArrayInputStream;
import java.rmi.RemoteException;
import java.util.ArrayList;
import java.util.logging.Logger;
import javax.activation.DataSource;
import javax.servlet.ServletConfig;
import javax.servlet.ServletContext;

352 Developing SIP and IP Multimedia Subsystem (IMS) Applications

import javax.servlet.sip.Address;
import javax.servlet.sip.ServletParseException;
import javax.servlet.sip.SipFactory;
import javax.servlet.sip.SipSession;
import javax.servlet.sip.SipURI;
import javax.servlet.sip.URI;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.rpc.holders.StringHolder;
import org.xml.sax.SAXException;
import FindHelp.FindHelpInterfaceProxy;
import com.ibm.itso.utils.ParseSIPMessage;
import com.ibm.itso.utils.ParseXML;

3. Copy and customize the class wide variables shown in Example 12-2.

Example 12-2 Class variables for the SIP Servlet

public class FindHelp extends javax.servlet.sip.SipServlet implements
javax.servlet.Servlet {
private static final long serialVersionUID = 1L;
private static final int portNumberDefault = 5060;
private static String presenceServerPortNumber = (new
Integer(portNumberDefault)).toString();
private static String presenceServerHostname = "localhost";
private static String processServerURI =
"http://localhost:9080/FindHelpWeb/sca/setupcall";
private static String originalSIPSession =
"FindHelp.originalSIPSession";
private static String to = "FindHelp.to";
private Logger log = null;
private ServletContext servletContext = null;

4. A number of the variables defined in the previous step need to be initialized.
Similar to HTTP servlets, SIP Servlets have an init method that runs during
the creation of the servlet. This method is used to read in values in the
deployment descriptor which are then stored in the class variables. Examples
of such variables are PresenceServerPortNumber,
PresenceServerHostname and ProcessServerURI defined in 12.2.2, “Create
a new SIP Servlet” on page 344. The logger is initialized and the servlet
context is stored so additional SIP dialogs can be created as required. The
example code is shown in Example 12-3 on page 354.

 Chapter 12. Implementing the IMS sample service 353

Example 12-3 init() example code

public void init(ServletConfig arg0) throws ServletException
{

String className = this.getClass().getName();
log = Logger.getLogger(className);
String localPortNumber =

arg0.getInitParameter("PresenceServerPortNumber");
String localHostname =

arg0.getInitParameter("PresenceServerHostname");
String localProcessServer =

arg0.getInitParameter("ProcessServerURI");
if(localPortNumber != null)
{

presenceServerPortNumber = localPortNumber;
}
if(localHostname != null)
{

presenceServerHostname = localHostname;
}
if(localProcessServer != null)
{

processServerURI = localProcessServer;
}
servletContext = arg0.getServletContext();
log.info("init()

presenceServerPortnumber="+presenceServerPortNumber+"
presenceServerHostname="+presenceServerHostname);

super.init(arg0);
}

5. The service will start with an INVITE message from the SIPp client. This
message needs to be processed by the SIP Servlet within the doInvite
method. The example code for the doInvite implementation can be seen in
Example 12-4. The code retrieves the content type of the body, verifies that it
is as expected text/xml and retrieves the body as a string. The body is then
parsed by the utility classes to retrieve the group name. A SIP dialog is
established with a 180 ringing followed by 200 OK. The originating SIP URI is
stored within the application session for later retrieval (so the outbound INFO
can be sent). Finally an outbound subscribe is generated in a new dialog to
the presence server with the responding group’s SIP URI. The logic for the
subscribe message is completed in the generateSubscribe method.

354 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Example 12-4 doInvite() example code

protected void doInvite(SipServletRequest arg0) throws
ServletException, IOException
{

log.info("doInvite ENTRY()");
String contentType = arg0.getContentType();
String contentBody = null;
String groupName = null;
if(contentType!= null && contentType.equalsIgnoreCase("text/xml"))
{

contentBody = (String)arg0.getContent();
log.info("contentBody='"+contentBody+"'");
groupName = ParseXML.parseInviteBody(contentBody);
log.info("groupName="+groupName);

}
log.info("contentType='"+contentType+"'");
SipServletResponse ringing = arg0.createResponse(180);
ringing.send();
log.info("completed 180 send");
SipServletResponse complete = arg0.createResponse(200);
complete.send();
log.info("completed 200 send");
arg0.getApplicationSession().setAttribute(to, arg0.getFrom());
boolean rc = generateSubscribe(arg0, groupName);
log.info("generateSubscribe rc="+rc);

}

6. The class will report error for the missing method generateSubscribe. This
code can be seen in Example 12-5 on page 356. The servlet needs to
establish a new dialog with the Presence server, therefore the
servletContext is used to retrieve the SipFactory. It is used first to create a
new SIP address representing the group and secondly to create the
SUBSCRIBE request. The Presence server requires several headers to be
defined in the subscribe for the correct behavior to be observed:

– Event: This is set for all Presence server requests to presence

– Supported: Is used by the Presence server to determine if the URI being
subscribed to is a group URI or individual. If this setting is not included the
presence server will not communicate with group list server. Therefore this
is included in the sample code.

– Accept: Details the format of the body that the servlet will accept in
response to the subscribe (for example in subsequent notify messages).

– Expires: Is set to zero, and notifies the Presence server that the servlet
requires a snapshot of the current status (for example, a single response)

 Chapter 12. Implementing the IMS sample service 355

and does not want to subscribe to presence information for an extended
period of time.

The SipFactory is used to create a new SipURI corresponding to the
Presence server endpoint and the setRequestURI method called to define this
for the subscribe request. The request is then sent to the Presence server.
Later in the service an INFO message will be sent to the originator of the
service to notify them of who will contact them, thereby storing the original
SIP session in the new SIP session for later retrieval.

Example 12-5 generateSubscribe() example code

private boolean generateSubscribe(SipServletRequest arg0, String
groupSIPAddress) throws IOException, ServletParseException
{

log.info("generateSubscribe ENTRY()");
SipFactory sipFactory = (SipFactory)

servletContext.getAttribute("javax.servlet.sip.SipFactory");
Address sipGroup = sipFactory.createAddress(groupSIPAddress);
SipServletRequest subscribeRequest =

sipFactory.createRequest(arg0.getApplicationSession(), "SUBSCRIBE",
arg0.getTo(), sipGroup);

subscribeRequest.setHeader("Event", "presence");
subscribeRequest.setHeader("Supported", "eventlist");
subscribeRequest.setHeader("Accept", "application/pidf+xml,

application/rlmi+xml, multipart/related, amultipart/signed,
application/pkcs7-mime");

subscribeRequest.setExpires(0);
SipURI sipURI =

sipFactory.createSipURI("service",presenceServerHostname);
int sipPort = portNumberDefault;
try
{

sipPort = (new Integer(presenceServerPortNumber)).intValue();
}
catch (NumberFormatException e)
{

log.warning("The port number for the Group List Server is not
defined correctly, it is currently set to'"+presenceServerPortNumber+"'
will it should be an int");

e.printStackTrace();
}
sipURI.setPort(sipPort);
subscribeRequest.setRequestURI(sipURI);
subscribeRequest.send();

356 Developing SIP and IP Multimedia Subsystem (IMS) Applications

log.info("generateSubscribe EXIT() sent to
"+subscribeRequest.getTo().toString()+" from
"+subscribeRequest.getFrom());

subscribeRequest.getSession().setAttribute(originalSIPSession,
arg0.getSession());

return true;
}

7. Once the SUBSCRIBE has been processed by the Presence server, a notify
will be sent back to the servlet with a multipart mime with the initial part
detailing the members of the group and an additional part for each member of
the group that the Presence server holds valid status.

Immediately after the notify is received a 200 OK response is generated and
sent to the Presence server to ensure that any delay in processing the XML
body does not cause resends by the Presence server.

The body and content type of the request is retrieved and assuming the body
is a byte array (which it will be since a multipart mime is passed to the servlet
as a byte array), it is converted into a string for easier manipulation.

After retrieving the string representation of the body, the utility class
ParseSIPMessage is used to retrieve an ArrayList that stores each part of the
message as a separate string (one for the group information, and zero or
more items corresponding to the XML presence information available for the
members of the group).

This ArrayList needs to be processed by an XML parser to determine which
members presence information exist, and if they are currently available to
receive a call. The ParseXML utility class is used to parse the XML contained in
the ArrayList and return an ArrayList with the available members SIP URIs.
The originators SIP URI is retrieved from the application session (this was
stored during the processing of the INVITE), and passed with the list of
available members to the BPEL for processing.

BPEL will then determine the member of the list closest to the originator and
passes this back as a string. This string will be encoded into an XML string
and passed with the request object to the generateInfo method that is
responsible for sending the SIP INFO to the originator.

The sample code for the doNotify can be found in Example 12-6 on
page 357.

Example 12-6 doNotify() sample code

protected void doNotify(SipServletRequest arg0) throws
ServletException, IOException
{

log.info("doNotify() ENTRY");

 Chapter 12. Implementing the IMS sample service 357

SipServletResponse resp = arg0.createResponse(200);
resp.send();
Object content = arg0.getContent();
String contentType = arg0.getContentType();
String body = null;
if(content != null && contentType != null)
{

log.info("doNotify() content.getClass().getCanonicalName()="+
content.getClass().getCanonicalName());

log.info("doNotify() conentType="+contentType);
if (content instanceof byte[])
{

body = new String((byte[]) content);
}
log.info("body="+body);
if(body!=null)
{

ArrayList xmlBodyParts = ParseSIPMessage.parse(body,
contentType);

ArrayList availableMembers =
ParseXML.parsePresenceBodyParts(xmlBodyParts);

Address toAddress =
(Address)arg0.getApplicationSession().getAttribute(to);

String memberToBeContacted = invokeBPEL(availableMembers,
toAddress.getURI().toString());

log.info("memberToBeContacted="+memberToBeContacted + " from
the list of availableMembers="+availableMembers.toString());

String bodyInfo = "<?xml version=\"1.0\"
encoding=\"UTF-8\"?><FindHelp><ringing>"+memberToBeContacted+"</ringing
></FindHelp>";

generateInfo(arg0, bodyInfo);
}

}
super.doNotify(arg0);

}

8. Two errors will be reported regarding invokeBPEL and generateInfo being
undefined methods. See Example 12-7 on page 359 for sample code for the
invokeBPEL method. The code creates a FindHelpInterfaceProxy object that
allows communication to the BPEL Web service. It takes two input
parameters and returns two output parameters. The signature of the method
is:

public void invokeCallBack(

java.lang.String[] addresses,

358 Developing SIP and IP Multimedia Subsystem (IMS) Applications

java.lang.String originator,

javax.xml.rpc.holders.StringHolder status,
javax.xml.rpc.holders.StringHolder callee)

Where, addresses contains a list of the available members of the group, the
originator holds a string representation of the caller’s SIP URI and the two
stringHolders store the output parameters status and callee.

Example 12-7 invokeBPEL() sample code

private String invokeBPEL(ArrayList availableGroupMembers, String
originator)
{

log.info("invokeBPEL() ENTRY, originator="+originator+"
availableGroupMembers="+availableGroupMembers.toString());

FindHelpInterfaceProxy bpel = new FindHelpInterfaceProxy();
bpel.setEndpoint(processServerURI);
log.info("invokeBPEL() set URI for BPEL to="+processServerURI);
String[] availableMembers = new

String[availableGroupMembers.size()];
availableGroupMembers.toArray(availableMembers);
StringHolder status = new StringHolder();
StringHolder callee = new StringHolder();
try
{

bpel.invokeCallBack(availableMembers, originator, status,
callee);

log.info("invokeBPEL() Callee returned='"+callee.value+"
status="+status.value);

return callee.value;
} catch (RemoteException e) {

log.info("RemoteException occurred");
e.printStackTrace();

}
return null;

}

9. Sample code for the generateInfo method can be seen in Example 12-8 on
page 360. The code retrieves the original SIP session from the current
session (this was stored in Example 12-5 on page 356), which it uses to
generate a new outbound INFO with the body attached, it then sends the
request.

 Chapter 12. Implementing the IMS sample service 359

Example 12-8 generateInfo() sample code

private boolean generateInfo(SipServletRequest arg0, String body)
throws IOException, ServletParseException
{

log.info("generateInfo ENTRY()");
SipSession originalSipSession =

(SipSession)arg0.getSession().getAttribute(originalSIPSession);
SipServletRequest infoRequest =

originalSipSession.createRequest("INFO");
infoRequest.setContent(body, "text/xml");
infoRequest.send();
log.info("generateInfo EXIT() sent");
return true;

}

10.Once the client receives the INFO message it responds with a 200 OK,
signaling to the servlet to send a SIP BYE to end the session. The sample
code for the doSuccessResponse method is shown in Example 12-9. It receives
the successful response (200 OK), verifies that it corresponds to an INFO
request, it then creates and sends a new BYE request.

Example 12-9 doSuccessResponse() sample code

protected void doSuccessResponse(SipServletResponse arg0) throws
ServletException, IOException {

log.info("doSuccessResponse() ENTRY METHOD="+arg0.getMethod());
if(arg0.getMethod().equals("INFO"))
{

SipServletRequest bye = arg0.getSession().createRequest("BYE");
bye.send();

}
super.doSuccessResponse(arg0);

}

12.2.4 Export the application for deployment

The completed application has to be exported as a SAR file for it to be deployed
in the WebSphere Application Server 6.1 runtime.

1. Right-click FindHelp application and select Export.

2. Select SAR File.

3. Click Next.

360 Developing SIP and IP Multimedia Subsystem (IMS) Applications

4. Ensure that FindHelp is selected for the SIP project, and that a valid
destination is entered (for example, c:\temp\FindHelp.sar).

5. Click Finish.

The SIP Servlet development is now complete and ready for deployment onto a
WebSphere Application Server 6.1 runtime environment.

12.3 BPEL development

The BPEL process choreographs enablers (including the Location and Charging
services) and implements the core business logic of the FindHelp sample
application. In this section, we provide a step-by-step description of the
development of the integration module.

12.3.1 Create a new business integration module

To begin building the FindHelp application, you need to create a new module
called FindHelp as follows:

1. Select File → New → Other.

2. Select Module as shown in Figure 12-12 on page 362.

3. Click Next.

Note: The focus of this section is on the development of BPEL processes. A
brief introduction to WebSphere Integration Developer is presented in
Chapter 6, “IBM WebSphere Integration Developer” on page 119.

For more information about the WebSphere Integration Developer and the
WebSphere Process Server, refer to the redbook Getting started with
WebSphere Integration Developer and WebSphere Process Server,
SG24-7130.

 Chapter 12. Implementing the IMS sample service 361

Figure 12-12 Select a wizard

4. Fill in the New Module window with values as in Figure 12-13 on page 363:

a. Module Name: FindHelp

b. Module location: Click the check box for Use default.

5. Click Finish.

Note: We used the default location, you can a different location for your
solution.

362 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-13 The FindHelp module

6. Expand the FindHelp module.

The structure and artifacts will be displayed as shown in Figure 12-14 on
page 364. The organization of the structure maps to the building blocks of
WebSphere Process Server. For an introductary discussion of these building
blocks see 6.3.1, “Business Integration perspective and views” on page 126.

Note: When you click Finish and the correct perspective is not already set,
then you are prompted with a dialog box asking if to change the perspective.
Click Yes to switch to the Business Integration Perspective.

 Chapter 12. Implementing the IMS sample service 363

Figure 12-14 FindHelp module

12.3.2 Create the business object

We need to define the AddressesBO business object which is required for the
address parameter in the FindHelp interface. The AddressesBO contains an
array of strings.

To create a new data type execute the following steps:

1. In the Business Integration perspective.

2. Right-click the folder Data Types.

3. Select New → Business Object.

Note: All other business objects are created when the respective WSDL files
are imported.

364 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-15 New business object

4. This starts the New Data Object Wizard.

5. Enter AddressesBO for the name for the business object as shown in
Figure 12-16 on page 366.

6. Click Finish.

 Chapter 12. Implementing the IMS sample service 365

Figure 12-16 New business object wizard

After the new business object is created, it should appear in the business
integration view, and should open in the business object editor.

7. Add attributes by performing the following:

a. Select the business object AddressesBO.

b. Click the Add attribute icon in the business object editor action bar.

Note: Alternatively, you can right-click the business object to open the context
menu and then select Add attribute.

366 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-17 Add attribute action button

8. Change the attribute1 name to address

The AddressesBO business object represents an array of addresses.

9. Switch to the properties view.

10.In the properties view of the attribute check Array (see Figure 12-18 on
page 368).

Note: The name of the attribute can be changed from either the properties
view or the business object editor.

 Chapter 12. Implementing the IMS sample service 367

Figure 12-18 The attribute properties view

11.Save and close the business object editor.

12.3.3 Create the interface for the BPEL process

In this section we describe the creation of a new interface for the BPEL process.
The interface offers a single operation and a communication channel between
the SIP Servlet (see 12.2, “SIP Servlet development” on page 342) and the
BPEL process. This interface will use the AddressesBO business object we
created in the previous section.

To create the interface, perform the following steps:

1. Right-click the folder Interfaces and select New → Interface.

368 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-19 Select new interface

2. The New Interface Wizard will be displayed as in Figure 12-20 on page 370.

3. Enter the interface and module information.

a. Enter FindHelpInterface as the interface Name.

b. Verify that the selected module is FindHelp.

4. Click Finish.

 Chapter 12. Implementing the IMS sample service 369

Figure 12-20 New interface wizard

5. The wizard will create the new interface and open it in the interface editor.

We can now create the operation and the parameters.

6. Click the Add Request Response Operation icon in the interface editor.

Figure 12-21 Add Request Response Operation action button

7. Change the operation name to invokeCallBack.

370 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-22 Add a new request response operation

We need to add the input parameters addresses and originator for the
invokeCallBack interface.

8. Click the Add Input icon to specify addresses input.

9. Change the input1 name to addresses.

10.Select the addresses parameter and switch to the Properties view.

11.This opens the Data Type Selection window (see Figure 12-23). Select
Business Objects as the Parameter Type.

Figure 12-23 Select parameter type

12.In the Data Type Selection dialog (Figure 12-24 on page 372), select the
AddressesBO business object.

Note: The data type for addresses parameter is the AddressesBO
business object we created in 12.3.2, “Create the business object” on
page 364.

 Chapter 12. Implementing the IMS sample service 371

13.Click OK

Figure 12-24 Data type selection

14.Click the Add Input icon to specify originator input.

15.Change the name from input1 to originator.

16.Accept string as type for the input parameter.

The invokeCallBack interface has two output parameters status and callee.

17.Add status output parameter.

18.Click the Add Output icon .

19.Change the name from output1 to status.

20.Accept string as the data type.

21.Add callee output parameter.

22.Click the Add Output icon .

372 Developing SIP and IP Multimedia Subsystem (IMS) Applications

23.Change the output1 name to callee.

24.Accept string as the data type.

The completed interface is shown in Figure 12-25.

Figure 12-25 Completed FindHelpInterface interface

25.Save and close the interface editor.

12.3.4 Import the WSDL files

The interfaces for the Location, Third Party Call and the Diameter Offline
Charging services are defined using WSDL files. In this section we describe the
steps you need to go through to import the WSDL files into your module.

Import Location service WSDL files
You need to have installed the Location service, which is provided in the
additional material to this redbook.

Perform the following steps to acquire and then import the Location service
WSDL file into your module:

1. Logon to the administration console of the application server on which you
have deployed the location services. Point your browser to:
http://localhost:9060/ibm/console.

Note: For information about how to install and setup the Location service,
refer to 13.2.2, “Location server setup” on page 448, and also see
Appendix C, “Additional material” on page 637.

 Chapter 12. Implementing the IMS sample service 373

2. In the task view click the Applications folder to expand it.

3. Click Enterprise Applications to get a list of the applications that are
deployed on this server (see Figure 12-26).

Figure 12-26 Deployed enterprise applications

4. In the list of deployed enterprise applications click locationServerEAR. This
will open the Location server configuration.

Note: You may need to change server and port in the above URL to reflect
setup for your installation.

374 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-27 The location server configuration

5. In the Web Services Properties section, click Publish WSDL files.

Note: The WSDL files are packaged in archive files.

 Chapter 12. Implementing the IMS sample service 375

Figure 12-28 The published archive

6. Click the filename locationServerEAR_WSDLFile.zip to start the download.

7. Save the archive in a temporary directory.

8. Unpack the archive to the temporary directory.

9. Switch back to the WebSphere Integration Developer.

10.Right-click the FindHelp module and select Import.

This will open the Import wizard (see Figure 12-29 on page 377).

11.Select Interface/WSDL File.

12.Click Next.

376 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-29 The file import wizard

13.Click Browse and navigate to the TerminalLocationImpl.wsdl file.

This file will reside in the temporary directory (see “Unpack the archive to the
temporary directory.” on page 376) in the subdirectory:
\LocationServer\WebContent\WEB-INF\wsdl\.

14.Select TerminalLocationImpl.wsdl.

15.Enter FindHelp as the Into folder.

16.Click Finish to start the import.

 Chapter 12. Implementing the IMS sample service 377

Figure 12-30 Import file selection

17.When the importation is completed, you will see the following new members
in the Data Types, Interfaces and Web Service Ports folders of the FindHelp
module.

Table 12-2 Location service interface artifacts

Folder Membername

Interfaces TerminalLocationImpl

Web Service Ports TerminalLocationImpl

378 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Import Third Party Call Control service WSDL files
Before you initiate the importation of the Third Party Call Control service WSDL
files, you need to have installed the WebSphere Telecom Web Services Server.

Import the Third Party Call Control service WSDL files following the same steps
as in “Import Location service WSDL files” on page 373. Use the following values
for the importation:

� IMS Third Party Call for the application name

� IMS Third Party Call_WSDLFiles.zip for the WSDL archive file name

� \IMS Third Party Call.ear\thirdparty-web.war\WEB-INF\wsdl for the
subdirectory that will contain the WSDL files

� Select all files to import:

– px_cmn_f_2_0.wsdl

– px_cmn_t_2_1.xsd

– px_tpc_i_2_1.wsdl

– px_tpc_s_2_1.wsdl

– px_tpc_t_2_1.xsd

Data Types ArrayOf_tns3_nillable_LocationData

ArrayOf_xsd_nillable_anyURI

ArrayOf_xsd_nillable_string

LocationData

LocationInfo

PolicyException

RetrievalStatus

ServiceError

ServiceException

Note: See B.2, “IBM WebSphere Telecom Web Services Server” on page 540
for a description of the steps for installing the IBM WebSphere Telecom Web
Services Server.

Folder Membername

 Chapter 12. Implementing the IMS sample service 379

� When the importation is completed, you will see the following new members
in the Data Types, Interfaces and Web Service Ports folders of the FindHelp
module.

Table 12-3 Third Party Call Control interface artifacts

Import Diameter Offline Charging service WSDL files
Before you initiate the importation of the Diameter Offline Charging service
WSDL files, you need to have installed the WebSphere Diameter Enabler
component.

Folder Membername

Interfaces ThirdPartyCall

Web Service Ports ThirdPartyCall

Data Types CallInformation

CallStatus

CallTerminationCause

cancelCallRequest

cancelCallRequestResponse

ChargingInformation

endCall

endCallResponse

getCallInformation

getCallInformationResponse

makeCall

makeCallResponse

PolicyException

ServiceError

ServiceException

SimpleReference

TimeMetric

TimeMetrics

380 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Import the Diameter Offline Charging service WSDL files following the same
steps as in “Import Location service WSDL files” on page 373. Use the following
values for the importation:

� DHADiameterRfWebServiceEAR for the application name

� DHADiameterRfWebServicesEAR_WSDLFiles.zip for the WSDL archive file
name

� \DHADiameterRfWebServiceEAR.ear\DHADiameterRfWebService.war\WEB-INF\ws
dl for the subdirectory that will contain the WSDL files

� Import the WSDL file named DiameterRfService.wsdl

� When the importation is completed, you will see the following new members
in the Data Types, Interfaces and Web Service Ports folders of the FindHelp
module.

Table 12-4 Third Party Call Control interface artifacts

Note: See B.7, “IBM WebSphere Diameter Enabler component” on page 625
for a description of the steps for installing the WebSphere Diameter Enabler
component.

Folder Membername

Interfaces DiameterRfService_SEI

Web Service Ports DiameterRfService

 Chapter 12. Implementing the IMS sample service 381

Data Types ACAResults

Accounting

AppServInfo

ArrayOf_tns2_nillable_SDPmedia

ArrayOf_tns3_nillable_Avp

ArrayOf_tns3_nillable_VsAvp

ArrayOf_xsd_int

ArrayOf_xsd_string

Avp

AvpValueUtil

AvpValueUtilGrouped

AvpValueUtilOctetString

AvpValueUtilUnknown

AvpValueUtilUnsigned32

AvpValueUtilUnsigned64

AvpValueUtilUTF8String

CauseCode

SDPmedia

SipInfo

TrunkGroup

UUSdata

Vector

VsAvp

Folder Membername

382 Developing SIP and IP Multimedia Subsystem (IMS) Applications

12.3.5 Create the business process

In this section we will create the FindHelp business process. To create a new
business process execute the following steps:

1. Go to the Business Integration view.

2. Expand the folder Business Logic.

3. Right-click the folder Processes.

4. Select New → Business Process (see Figure 12-31 on page 384).

5. In the New Business Process window, enter FindHelpBP as the Name for the
business process.

6. Click Next.

Important: Your imported WSDL may contain a reference to the
WS-Addressing service. This will cause errors when you run the service.
Therefore, you need to correct the WSDL and remove the following line.

1. In the Business Integration view expand the Interfaces folder.

2. Select the DiameterRfService_SEI interface.

3. Right-click and select Open With → XML Source Page Editor.

4. This opens the DiameterRfService.wsdl.

5. In the file search for “wsaw”.

6. If your WSDL file contains a line similar to: <wsaw:UsingAddressing
wsdl:required="false"
xmlns:wsaw="http://www.w3.org/2006/02/addressing/wsdl"/>

Then, remove the complete line and save your WSDL file.

 Chapter 12. Implementing the IMS sample service 383

Figure 12-31 The new business process wizard

7. Select the option Select an existing Interface.

8. Click Browse.

9. From the Interface Selection dialog box (see Figure 12-32 on page 385),
select the FindHelpInterface.

10.Click OK.

Note: You should have defined the interface beforehand as we did in 12.3.3,
“Create the interface for the BPEL process” on page 368, or you can define
the interface here before you proceed.

384 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-32 Interface selection

11.The selected interface is now visible in the window shown in Figure 12-33 on
page 386.

12.Click Finish.

 Chapter 12. Implementing the IMS sample service 385

Figure 12-33 Select an Interface

The new process FindHelpBP will be generated and displayed in the Business
Process editor. Notice that a Receive node the entry point into the business
process was added. The generated Reply node returns the output parameters to
the component that invoked the interface.

386 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-34 The FindHelpBP business process editor

12.3.6 Add partner references

The BPEL specification refers to external services that interact with the process
as partners. We need to create Reference Partners for the external services
whose WSDL files we imported in 12.3.4, “Import the WSDL files” on page 373.

1. In the Business Integration view, navigate to the FindHelpBP in the
Processes folder.

2. Double-click FindHelpBP to open it in the Business Process Editor.

3. In the business process editor’s tray right-click Reference Partners.

4. Select Add Reference Partner (or click the Add icon right next to the
Reference Partner section as shown in Figure 12-35 on page 388).

 Chapter 12. Implementing the IMS sample service 387

Figure 12-35 Add a new reference partner

5. Change the Partner name to LocationServicePartner.

6. In the Properties view, select the Details tab.

7. Click Browse. This will open the interface selection window (see Figure 12-36
on page 389).

Note: You can also change the name of the partner reference in the
Properties view.

388 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-36 Select the interface for the reference partner

8. Select the TerminalLocationImpl interface.

9. Click OK.

When finished, the Details tab will look similar to Figure 12-37.

Figure 12-37 Reference partner details

 Chapter 12. Implementing the IMS sample service 389

10.Repeat Steps 3 to 9 to create reference partners for the remaining two
services using the following values:

Table 12-5 Reference partner and interface names

11.Save and close the business process editor.

12.3.7 Add process logic

This section focuses on the implementation of the process logic for the
FindHelpBP business process, which was created in 12.3.5, “Create the
business process” on page 383.

The FindHelp process is a strict sequential process. Figure 12-39 on page 392
shows the process outline. The main process interactions includes the following
building blocks:

� Init Process - initializes the process

� Process Addresslist - processes the addresslist to determine the closest
address

� Return Reply - returns a response to the invoking client

� Establish Call - establishes a call between originator and the closest address

� Create Charging Event - creates a charging event

To build the process outline follow these steps:

1. In the Business Integration view, expand the Business Logic and Processes
folder.

2. Double-click FindHelpBP to open it in the Business Process editor.

3. Select the Receive node.

4. Right-click and select Insert before → Sequence.

Reference Partner Name Interface

ThirdPartyCallControlPartner ThirdPartyCall

DiameterRfPartner DiameterRfService_SEI

390 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-38 Insert a sequence

5. Change the default name to Init Process.

6. Drag the Receive node and drop it inside the Init Process sequence.

7. Select the Reply node.

8. Right-click and select Insert before → Choice.

9. Change the default name to Process Addresslist.

10.Select the Reply node.

11.Right-click and select Insert before → Sequence.

12.Change the default name to Return Reply.

13.Drag the Reply node and drop it inside the Return Reply sequence.

 Chapter 12. Implementing the IMS sample service 391

14.Right-click anywhere on the canvas and select Add → Sequence.

15.Change the default name to Establish Call.

16.Right-click anywhere on the canvas and select Add → Sequence.

17.Change the default name to Create Charging Event.

18.Save the business process.

Figure 12-39 Business process outline

With the outline defined, the next step is to walk through each of the process
blocks and create the processing logic.

392 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Implement the Init Process sequence
In this sequence we log the receipt of the initial message and initialize process
variables.

1. First, we define global variables for the process.

a. Click the Add icon that is next to the label Variables (see Figure 12-39 on
page 392).

b. Add a new variable called nNumAddresses.

This variable stores the number of addresses in the list, which is passed
as input parameter when the process is invoked.

2. Select the nNumAddresses variable and open the Properties view.

3. In the Details section, click Browse and set the data type to int.

4. Add the second variable nIterator of data type int by repeating steps 1 to 3
above.

5. Add the third variable bMakeCallfault of data type boolean by repeating
steps 1 to 3 above.

6. Now, add a Java Snippet on the canvas.

a. Right-click the canvas after the Receive node.

b. Select Add → Snippet.

7. Rename the new snippet Init Variables.

8. Select the snippet and open the Properties view.

9. Select the Details tab.

You now have access to the visual snippet editor that can be used to write or
visually compose the necessary Java code.

Tip: You can also add nodes to the BPEL process by selecting the appropriate
node in the pallet on the left side of the business process editor. You simply
drag and drop the selected node into place on the canvas where you want to
insert it.

 Chapter 12. Implementing the IMS sample service 393

Figure 12-40 Init Variables snippet

In the above snippet we log the start of the process and initialize some internal
global variables.

10.Save the business process editor.

Implement the Process Addresslist choice
Three cases are implemented in the choice node:

� Empty list: Return error status and terminate the process

� Single entry in list: No need to determine the closest address, continue and
establish the call

� Many entries in list: Start to determine the closest address

Add these cases to the choice node by executing the following steps:

1. Select the default case.

2. Open the Properties view and select the Description tab.

3. Enter Empty as Display Name.

4. Select the Details tab.

5. Click Create a New Condition. This will open the visual editor.

6. Create a condition as shown in Figure 12-41.

394 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-41 Empty condition

7. In the business process editor, select the Empty node.

8. Right-click and select Add → Snippet.

9. Rename the snippet Assign EmptyList Status.

The Process Addresslist node should now look like the one in.Figure 12-42.

Figure 12-42 Process Addresslist with Empty Case

10.With the snippet selected, open the Properties view.

11.Select the Details tab.

12.Create a visual snippet as shown in Figure 12-43 on page 395.

Figure 12-43 Assign EmptyList Status snippet

Note: This branch is only entered, if the list with addresses is empty, i.e.
the number of addresses in the list equals zero.

 Chapter 12. Implementing the IMS sample service 395

This snippet sets the status output parameter to “ALL_BUSY” and writes a log.

To add a second case statement to the choice node follow these steps:

1. Select the Process AddressList choice node.

2. Right-click and select Add Case.

3. Select the new case.

4. Open the Properties view and select the Description tab.

5. Enter Single Entry as Display Name.

6. Select the Details tab.

7. Click Create a New Condition. This will open the visual editor.

8. Create a condition as shown in Figure 12-44.

Figure 12-44 Single Entry condition

This branch is only entered, if there is only one address in the list.

9. In the business process editor, select the Single Entry node.

10.Right-click and select Add → Snippet.

11.Rename the snippet Assign First Address.

The Process Addresslist node should look similar to Figure 12-45 on
page 396.

Figure 12-45 Process Addresslist with Single Entry case

12.With the snippet selected, open the Properties view.

13.Select the Details tab.

14.Create a visual snippet as shown in Figure 12-46.

396 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-46 Assign First Address snippet

This snippet assigns the one and only address in the list to the output parameter
Callee and writes a log.

Next, we add the Otherwise case to the Choice node. This case will catch all
other conditions (lists with more than one address). If there are multiple
addresses, we need to determine the one that is closest to the originator. To do
so, follow these steps:

1. Select the Process AddressList choice node.

2. Right-click and select Add Otherwise.

3. Select the new Otherwise case.

4. Right-click and select Add → Sequence.

5. Rename the new sequence Determine Closest Address.

6. The Process Addresslist node should look like Figure 12-47.

Figure 12-47 Process Addresslist with Otherwise case

 Chapter 12. Implementing the IMS sample service 397

Before invoking the Location service we need to define the required input and
output variables. Using the Add icon next to the Variables label add the variables
as described in Table 12-6.

Table 12-6 Variables for Determine Closest Address sequence

7. Select the Determine Closest Address sequence.

8. Right-click and select Add → Snippet.

9. Rename the new snippet Assign GetLocation Input.

10.With the snippet selected, open the Properties view .

11.Select the Details tab.

12.Create a visual snippet as shown in Figure 12-48.

Variable Data type

uriAddress anyURI

nRequestedAccuracy int

nAcceptableAccuracy int

nMinDistance int

sMinDistanceAddress string

fOrigLongitude float

fOrigLatitude float

nCurDistance int

sCurDistanceAddress string

LocationResponse LocationInfo

Tip: To assign the anyURI data type you need to check the Show all XSD
types check box in the Data Type Selection dialog box.

398 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-48 Assign GetLocation Input snippet

Now it is time to invoke the getLocation operation of the Location Web service.

13.Select the Determine Closest Address node.

14.Right-click and select Add → Invoke.

15.Rename the new invoke node GetLocation.

16.With the invoke node selected, open the Properties view.

17.Select the Details tab.

18.Click Browse to select a Reference Partner. The partner selection dialog box
will be opened.

19.Select LocationServicePartner.

20.Click OK.

Note: We use 100 meter as accuracy. If you change the value for accuracy,
make sure that your location simulator database is populated accordingly.

 Chapter 12. Implementing the IMS sample service 399

Figure 12-49 Select a reference partner

21.The selected Partner and Interface are displayed in the Details tab.

22.Choose getLocation as the operation.

23.Make sure that Use Data Type Variables check box is checked.

24.To assign a variable to the URI input parameter, click the icon at the end
of the line. The Select Variable for URI dialog box opens (see Figure 12-50 on
page 401).

25.Select uriAddress.

26.Click OK.

400 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-50 Select variable

27.Similarly assign the following variables to the input and output parameters of
the getLocation operation:

Table 12-7 Assign variables to the getLocation parameters

The completed GetLocation Details tab should look like Figure 12-51 on
page 402.

Parameter Variable

requestedAccuracy nRequestedAccuracy

acceptableAccuracy nAcceptableAccuracy

getLocationReturn LocationResponse

 Chapter 12. Implementing the IMS sample service 401

Figure 12-51 GetLocation details

28.Select the Determine Closest Address sequence.

29.Right-click and select Add → Snippet.

30.Rename the new snippet Assign GetLocation Output.

31.With the snippet selected, open the Properties view.

32.Select the Details tab.

33.Create a visual snippet as shown in Figure 12-52.

Figure 12-52 Assign GetLocation Output snippet

402 Developing SIP and IP Multimedia Subsystem (IMS) Applications

To calculate the address that is nearest to the originator we need to call the
getTerminalDistance for each address in the list:

34.Select the Determine Closest Address sequence.

35.Right-click and select Add → While Loop.

36.Set the name of the new While loop to Loop Through Addresslist.

37.With the snippet selected, open the Properties view.

38.Select the Details tab to specify the loop conditions.

39.In the Details tab select Create a New Condition. This opens the visual
snippet editor.

40.The loop shall iterate through all entries in the addresslist. The condition is
implemented in the snippet as shown in Figure 12-53.

Figure 12-53 Loop through Addresslist condition

41.Select the Loop Through Addresslist While loop.

42.Right-click and select Add → Snippet.

43.Rename the new snippet Assign GetDistance Input.

44.With the snippet selected, open the Properties view.

45.Select the Details tab.

46.Create a visual snippet as shown in Figure 12-54.

Figure 12-54 Assign GetDistance Input snippet

We are ready to invoke the getTerminalDistance operation of the Location Web
service.

 Chapter 12. Implementing the IMS sample service 403

47.Select the Loop Through Addresslist While loop.

48.Right-click and select Add → Invoke.

49.Rename the new invoke node GetDistance.

50.With the invoke node selected, open the Properties view.

51.Select the tab Details.

52.Click Browse to select a Reference Partner. The partner selection dialog box
opens.

53.Select LocationServicePartner.

54.Click OK.

55.The selected Partner and Interface are displayed in the Details tab.

56.Choose getTerminalDistance as the operation.

57.Make sure that Use Data Type Variables check box is checked.

58.Similar to the getLocation invoke node (see Step 24 on page 400) assign the
following variables to the input and output parameters of the
getTerminalDistance operation:

Table 12-8 Assign variables to the getTerminalDistance parameters

When you are finished, the GetDistance Details tab should look similar to
Figure 12-55 on page 405.

Parameter Variable

uri uriAddress

latitude fOrigLatitude

longitude fOrigLongitude

getTerminalDistanceReturn nCurDistance

404 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-55 GetDistance details

59.Select the Loop Through Addresslist While loop.

60.Right-click and select Add → Snippet.

61.Rename the new snippet Assign GetDistance Output.

62.With the snippet selected, open the Properties view.

63.Select the Details tab.

64.Create a visual snippet as shown in Figure 12-56.

Figure 12-56 Assign GetDistance Output snippet

 Chapter 12. Implementing the IMS sample service 405

65.Select the Determine Closest Address sequence.

66.Right-click and select Add → Snippet.

67.Rename the new snippet Assign Closest Address.

68.With the snippet selected, open the Properties view .

69.Select the tab Details.

70.Create a visual snippet as shown in Figure 12-57.

Figure 12-57 Assign Closest Address snippet

At this stage we have calculated the closest address and we are ready to return
a response to the initial request.

Implement the Return Reply sequence
This sequence responds to the initial request by returning a status and the
address that is closest to the originator. The Reply node was automatically
created when we created the business process. We just have to add some
tracing information.

1. Select the Reply node.

2. Right-click and select Insert Before → Snippet.

3. Rename the new snippet Log Reply.

4. With the snippet is selected, open the Properties view.

5. Select the Details tab.

6. Create a visual snippet as shown in Figure 12-58.

Figure 12-58 Log Reply snippet

406 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Implement the Establish Call sequence
This sequence invokes the Third Party Call Control service to establish a call
between the originator and the closest address

Before we invoke the Third Party Call Control service we need to define the
required input and output variables. Using the Add icon next to the Variables
label add the following variables:

Table 12-9 Variables for Establish Call sequence

Follow these steps to make a call.

1. Select the Establish Call sequence, and right-click.

2. Select Add → Choice.

3. Rename the new choice node Establish Call Choice.

4. Select the default case.

5. Open the Properties view and select the Description tab.

6. Enter Status OK as Display Name.

7. Select the Details tab.

8. Click Create a New Condition. This will open the visual editor.

9. Create a condition as shown in Figure 12-59.

Figure 12-59 Establish Call condition

10.Select the Status OK case.

11.Right-click and select Add → Snippet.

12.Rename the new snippet Assign MakeCall Input.

13.With the snippet selected, open the Properties view .

14.Select the Details tab.

15.Create a visual snippet as shown in Figure 12-60.

Variable Data type

MakeCallParameters makeCall

MakeCallResponse makeCallResponse

bMakeCallFault boolean

 Chapter 12. Implementing the IMS sample service 407

Figure 12-60 Assign MakeCall Input snippet

Add the Otherwise condition to cover the error case

16.Select the Establish Call choice node.

17.Right-click and select Add Otherwise.

18.Select the Otherwise case.

19.Right-click and select Add → Snippet.

20.Rename the new snippet Log No Call.

21.With the snippet selected, open the Properties view .

22.Select the Details tab.

23.Create a visual snippet as shown in Figure 12-61.

Figure 12-61 Log No Call snippet

We are ready to invoke the makeCall operation of the Third Party Call Control
Web service.

24.Select the Status OK case.

25.Right-click and select Add → Invoke.

26.Rename the new Invoke node MakeCall.

27.With the Invoke node selected, open the Properties view.

408 Developing SIP and IP Multimedia Subsystem (IMS) Applications

28.Select the Details tab.

29.Click Browse to select a Reference Partner. The partner selection dialog box
will be opened.

30.Select ThirdPartyCallControlPartner.

31.Click OK.

32.The selected Partner and Interface are displayed in the Details tab.

33.Choose makeCall as the operation.

34.Make sure that Use Data Type Variables check box is checked.

35.Similar to the getLocation Invoke node (see Step 24 on page 400) assign the
following variables to the input and output parameters of the makeCall
operation:

Table 12-10 Assign variables to the makeCall parameters

When finished, the MakeCall Details tab should look like Figure 12-62 on
page 409.

Figure 12-62 MakeCall details

Parameter Variable

parameters MakeCallParameters

result MakeCallResponse

 Chapter 12. Implementing the IMS sample service 409

The ThirdPartyCall interface defines special faults in the operation signature. We
need to catch these faults. The next sequence of steps will add a fault handler to
the Invoke activity:

36.Select the MakeCall activity.

37.Right-click and select Add Fault Handler. A new fault handler activity will be
added to the right of the MakeCall activity.

38.With the new fault handler selected, open the Properties view.

39.Select the Details tab and apply the following settings:

a. Fault Type: Choose User-defined.

b. Namespace: Select:
http://www.csapi.org/wsdl/parlayx/third_party_call/v2_1/interface

c. Fault Name: Select ServiceException.

d. Variable Name: Enter MakeCallServiceException.

e. Choose Data-Type.

f. Click Browse.

g. Select ServiceException from the Data Type Selection dialog box.

Next we add the exception handler to the Catch clause.

40.Right-click the ServiceException catch clause.

41.Select Add → Snippet.

42.Rename the new snippet Handle MakeCallServiceException.

43.With the snippet selected, open the Properties view.

44.Select the Details tab.

45.Create a visual snippet as shown in Figure 12-63.

Figure 12-63 Handle MakeCallServiceException snippet

These sequence of steps will log the MakeCall invocation.

46.Select the Status OK case.

47.Right-click and select Add → Snippet.

48.Rename the new snippet Assign MakeCall Output.

410 Developing SIP and IP Multimedia Subsystem (IMS) Applications

49.With the snippet is selected, open the Properties view.

50.Select the Details tab.

51.Create a visual snippet as shown in Figure 12-64.

Figure 12-64 Assign MakeCall Output snippet

The Establish Call Choice node should now look like Figure 12-65 on page 411.

Figure 12-65 Establish Call sequence

Implement the Create Charging Event sequence
The next sequence of steps implement the invocation of the Diameter offline
event charging service to generate charging events.

Note: This is just a sample on how to integrate with a Diameter server. We will
only supply the mandatory data to the charging service. Detailed discussion of
the charging interface is outside the scope of this redbook.

 Chapter 12. Implementing the IMS sample service 411

Before we can invoke the Diameter event charging service we need to define the
required input and output variables. Using the Add icon next to the Variables
label add the following variables:

Table 12-11 Variables for Create Charging Event sequence

Follow these steps to create a charging event:

1. Select the Create Charging Event sequence.

2. Right-click and select Add → Choice.

3. Rename the new choice node Create Charging Event Choice.

4. Select the default case. Open the Properties view.

5. Select the Description tab.

6. Enter Status OK as Display Name.

7. Select the Details tab.

8. Click Create a New Condition. This will open the visual editor.

9. Create a condition as shown in Figure 12-66.

Figure 12-66 Create Charging Event condition

Variable Data type

diaSessionId string

diaRecordNumber int

diaUserName string

diaAccInterInterval int

diaDestRealm string

diaEventTimeStamp long

diaOriginStateId int

diaAct Accounting

diaEventOffAccReturn ACAResults

412 Developing SIP and IP Multimedia Subsystem (IMS) Applications

10.Select the Status OK case.

11.Right-click and select Add → Snippet.

12.Rename the new snippet Assign ChargingEvent Input.

13.With the snippet selected, open the Properties view.

14.Select the Details tab.

15.Create a visual snippet as shown in Figure 12-67 on page 413.

Figure 12-67 Assign ChargingEvent Input snippet

We add Otherwise condition to cover the error case.

16.Select the Create Charging Event Choice node.

17.Right-click and select Add Otherwise.

18.Select the Otherwise case.

19.Right-click and select Add → Snippet.

20.Rename the new snippet Log No Charging.

21.With the snippet selected, open the Properties view.

 Chapter 12. Implementing the IMS sample service 413

22.Select the Details tab.

23.Create a visual snippet as shown in Figure 12-68.

Figure 12-68 Log No Charging snippet

We are ready to implement the invocation of eventOfflineAccounting operation of
the DiameterRfService Web service.

24.Select the Status OK case.

25.Right-click and select Add → Invoke.

26.Rename the new Invoke node ChargeEvent.

27.With the Invoke node selected, open the Properties view.

28.Select the Details tab.

29.Click Browse to select a Reference Partner. The partner selection dialog box
will open.

30.Select DiameterRfPartner.

31.Click OK. The selected Partner and Interface will be displayed in the Details
tab.

32.Choose eventOfflineAccounting as the operation.

33.Make sure that Use Data Type Variables check box is checked.

34.Similar to the getLocation invoke node (see Step 24 on page 400), assign the
following variables to the input and output parameters of the
eventOfflineAccounting operation:

Table 12-12 Assign variables to the eventOfflineAccounting parameters

Parameter Variable

sessionId diaSessionId

recordNumber diaRecordNumber

userName diaUserName

acctInterimInterval diaAccInterInterval

destinationRealm diaDestRealm

eventTimestamp diaEventTimeStamp

414 Developing SIP and IP Multimedia Subsystem (IMS) Applications

When completed, the MakeCall Details tab should look like Figure 12-69 on
page 415.

Figure 12-69 ChargeEvent details

35.Select the Status OK case.

36.Right-click and select Add → Snippet.

37.Rename the new snippet Assign ChargingEvent Output.

38.With the snippet selected, open the Properties view.

39.Select the Details tab.

40.Create a visual snippet as shown in Figure 12-70.

originStateID diaOriginStateId

act diaAct

eventOfflineAccountingReturn diaEventOffAccReturn

Parameter Variable

 Chapter 12. Implementing the IMS sample service 415

Figure 12-70 Assign ChargingEvent Output snippet

The Create Charging Event sequence should now look like Figure 12-71 on
page 416.

Figure 12-71 Create Charging Event sequence

12.3.8 Assemble the FindHelp module

After developing the components, we need to wire the components to complete
the module.

Add components to the module
The assembly editor is the component of WebSphere Integration Developer
where individual components are customized and wired to each other. To wire
the components of FindHelp module together, perform the following steps.

Note: The following steps are one of many possible approaches to building
the assembly diagram.

416 Developing SIP and IP Multimedia Subsystem (IMS) Applications

1. Return to the Business Integration view.

2. Expand the FindHelp project.

3. Double-click the FindHelp module.

4. This opens the assembly editor in the workspace as in Figure 12-72 on
page 417.

Figure 12-72 Assembly editor

5. Add a service component to the diagram by clicking the component icon .

6. Click anywhere on the canvas of the assembly diagram.

7. Select the Properties view.

8. Change the Display name and Name to FindHelp.

Note: The assembly editor consists of a canvas area and a palette for
selecting components you can add to the diagram. The palette is located to
the left of the canvas. There are nested items within the palette, you access
these by clicking the gray > (greater than) symbol text to the parent item
(Figure 12-72 on page 417).

 Chapter 12. Implementing the IMS sample service 417

Figure 12-73 FindHelp component

9. In the assembly diagram, select the FindHelp component.

10.Click the Add Interface icon (see Figure 12-73).

11.When the Add Interface dialog opens, select FindHelpInterface.

12.Click OK.

We now need to define the implementation of the component. This is in fact the
BPEL process we have created earlier in this section.

13.Right-click the FindHelp component.

14.Choose Select Implementation → Process as in Figure 12-74 on page 419.

418 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-74 Select component implementation

15.In the process selection dialog select FindHelpBP process.

16.Click OK.

 Chapter 12. Implementing the IMS sample service 419

Figure 12-75 Select process

The FindHelp component is called by a SIP Servlet client. To allow this, you need
to add an export reference to the component as follows:

17.Using the palette, select the export icon.

18.Add it to the canvas.

420 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-76 Add an export

19.Select the new Export and switch to the properties view.

20.Change the name to setupcall.

21.In the assembly diagram, select the setupcall export component.

22.Click the Add Interface icon .

23.In the Add Interface dialog select FindHelpInterface.

24.Click OK.

Now we need to wire both components.

25.In the assembly diagram, right-click the setupcall component.

26.Select Generate Binding → Web Service Binding.

27.Answer Yes to automatically generate a binding.

28.In the Select Transport dialog select soap/http.

29.Click OK.

 Chapter 12. Implementing the IMS sample service 421

Figure 12-77 Select transport

30.In the assembly diagram, right-click the setupcall component.

31.Select Wire to existing. This will wire the setupcall component to the
FindHelp component.

The assembly diagram should now look like the one in Figure 12-78 on
page 423.

422 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-78 FindHelp wired to the setupcall export

Next we import and wire the external services that are required by the FindHelp
component.

Add and wire the TerminalLocation
1. Using the palette, select the import icon and add it to the canvas.

2. In the Properties view, change the default name to TerminalLocationImport.

3. In the assembly diagram, select the TerminalLocationImport component.

4. Click the Add Interface icon .

5. In the Add Interface dialog, select TerminalLocationImpl.

6. Click OK.

7. Right-click the TerminalLocationImport component and select Generate
Binding → Web Service Binding.

8. In the Binding tab of the Properties view click Browse. The Select WSDL file
dialog opens.

9. Select TerminalLocationImpl.wsdl.

10.Click OK.

 Chapter 12. Implementing the IMS sample service 423

Figure 12-79 Select a WSDL file

The Binding tab in the Properties view should now look like Figure 12-80.

Figure 12-80 The binding properties of the import component

We will now wire the FindHelp component to the TerminalLocationImport.

11.In the assembly editor, right-click the FindHelp component.

Note: Verify that the servername and port of the endpoint match your
installation. If they don’t, then change the endpoint accordingly.

424 Developing SIP and IP Multimedia Subsystem (IMS) Applications

12.Select Wire (Advanced).

13.In the Advanced Wiring dialog select TerminalLocationImport.

14.In the Add Wire dialog click OK to create a matching reference.

15.Click OK.

16.In the assembly editor, select the FindHelp component.

17.In the Details tab of the Properties view, expand References.

18.Click TerminalLocationImplPartner.

19.In the Details tab, change the partner reference Name to:
LocationServicePartner

20.In the menu select Project → Clean.

21.Accept the defaults.

22.Click OK to rebuild the project.

Add and wire the ThirdPartyCallControl
1. Using the palette, select the import icon and add it to the canvas.

2. In the Properties view, change the default name to:
ThirdPartyCallControlImport

Important: The name of the reference of the component was generated. But it
must match the partner reference we defined earlier in the business process
editor (see 12.3.6, “Add partner references” on page 387).

Attention: If you get the error:

“The operation 'invokeCallBack' of the interface
'ns1:FindHelpInterface' in the process component file
'/FindHelp/FindHelp.component' does not specify the mandatory
JoinTransaction interface qualifier.”

Then, you need to specify the QoS Qualifier.

a. In the assembly editor select the FindHelp component.

b. In the Details tab of the Properties view, expand Interfaces.

c. Select the FindHelpInterface.

d. In the Qualifiers tab, select Add.

e. In the Select Qualifier dialog select Join transaction.

f. Click OK.

 Chapter 12. Implementing the IMS sample service 425

3. In the assembly diagram, select the ThirdPartyCallControlImport component.

4. Click the Add Interface icon .

5. In the Add Interface dialog, select ThirdPartyCall.

6. Click OK.

7. Right-click the ThirdPartyCallControlImport component and select Generate
Binding → Web Service Binding.

8. In the Binding tab of the Properties view click Browse. The Select WSDL file
dialog will open.

9. Select px_tpc_s_2_1.wsdl.

10.Click OK.

11.In the assembly editor, right-click the FindHelp component.

12.Select Wire (Advanced).

13.In the Advanced Wiring dialog select ThirdPartyCallControlImport.

14.In the Add Wire dialog click OK to create a matching reference.

15.Click OK.

16.In the assembly editor, select the FindHelp component.

17.In the Details tab of the Properties view, expand References.

18.Click ThirdPartyCallPartner.

19.In the Details tab of the partner reference change the Name to:
ThirdPartyCallControlPartner

Add and wire the Diameter Rf Service
1. Using the palette, select the import icon .

2. Add it to the canvas.

3. In the Properties view, change the default name to DiameterRfImport.

4. n the assembly diagram, select the DiameterRfImport component.

5. Click the Add Interface icon .

6. In the Add Interface dialog, select DiameterRfService_SEI.

7. Click OK.

8. Right-click the DiameterRfImport component.

9. Select Generate Binding → Web Service Binding.

10.In the Binding tab of the Properties view, click Browse.

11.Select WSDL file dialog opens.

426 Developing SIP and IP Multimedia Subsystem (IMS) Applications

12.Select DiameterRfService.wsdl.

13.Click OK.

14.In the assembly editor, right-click the FindHelp component.

15.Select Wire (Advanced).

16.In the Advanced Wiring dialog select DiameterRfControlImport.

17.In the Add Wire dialog, click OK to create a matching reference.

18.Click OK.

19.In the assembly editor, select the FindHelp component.

20.In the Details tab of the Properties view, expand References.

21.Click DiameterRfService_SEIPartner.

22.In the Details tab of the partner reference change the Name to
DiameterRfPartner.

The final assembly diagram should look like Figure 12-81.

Figure 12-81 Final assembly diagram

12.4 Export the FindHelp WSDL files

We need to export the WSDL file, which describes the service that is provided by
the FindHelp process component. This will be used to build the SIP Servlet for
the FindHelp service. Refer to 12.2, “SIP Servlet development” on page 342 for
how the FindHelp WSDL is used to implement the SIP Servlet.

Follow these steps to create the FindHelp WSDL archive.

 Chapter 12. Implementing the IMS sample service 427

1. From the menu select File → Export.

This opens the Export wizard (seeFigure 12-82).

2. Select ZIP file.

3. Click Next.

Figure 12-82 Export file wizard

4. In the next window, select the following files in the file list on the right:

a. AddressesBO.xsd

b. FindHelpInterface.wsdl

c. setupcall_FindHelpInterfaceHttp_Service.wsdl

428 Developing SIP and IP Multimedia Subsystem (IMS) Applications

5. Specify the name of the archive and the directory where you want to store the
archive in the “To zip file” field.

6. Click Finish.

Figure 12-83 Select files for export

 Chapter 12. Implementing the IMS sample service 429

The FindHelp WSDL files are now available for the development of the FindHelp
SIP Servlet.

12.4.1 Unit test the FindHelp module

The IBM WebSphere Integration Developer provides a comprehensive
debugging and unit test environment. We make use of two of the debugging and
unit testing components for the FindHelp business process unit test:

� The runtime/execution environment for the BPEL process provided by the
WebSphere Process Server provides.

� The test scenarios provided by the Integrated Test Client.

Configuring the WebSphere Process Server
Before deploying any application to the process server you have to set the
configuration parameters:

1. Select the WebSphere Process Server V6.0 runtime as your target test server
as follows:

a. Select Windows → Preferences.v

b. Expand Server (in the left pane) and expand the list of installed runtimes.

c. Select WebSphere Process Server v6.0 as shown in Figure 12-84 on
page 431.

d. Click OK.

430 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-84 Installed runtimes

2. If it is not already open, open the Business Integration perspective.

3. Select Window → Open Perspective → Business Integration.

4. Select the Servers tab in the pane at the bottom right.

Figure 12-85 Servers view

 Chapter 12. Implementing the IMS sample service 431

5. Double-click the server name to open the configuration editor.

6. In the Server setting, select SOAP as the Server connection type and admin
port.

7. In the Publishing section, select Run server with resources within the
workspace.

Figure 12-86 Using the server configuration editor

8. Save these settings and close the configuration editor.

Test the integration service module
The end-to-end Test Framework can be invoked on any service component from
the assembly diagram.

Start by opening the assembly diagram:

1. From the Business Integration perspective, expand the FindHelp project.

2. Double-click the FindHelp module to open the assembly diagram.

432 Developing SIP and IP Multimedia Subsystem (IMS) Applications

3. Right-click the FindHelp component and select Test Component from the
context menu.

4. The test editor similar to Figure 12-87 will open.

5. Provide values for the input parameters.

6. Click Continue.

Figure 12-87 Test editor

7. In the Deployment Location dialog, verify that WebSphere Process Server
v6.0 is selected.

Note: To run the interface test, select the import component whose interfaces
you want to test. Right-click and select Test Component.

What you are going to invoke is on the left column. On the right, you can
select the module, component, interface, and operation that you want to
invoke. Below that, are the parameters. You are able to provide values for the
operation input message. Note also the Datapool option, it enables you to
save and reuse input data if you must test a component several times and to
manage sets of test data.

 Chapter 12. Implementing the IMS sample service 433

8. Click Finish.

Once the test has completed, you can see the response message in the Detailed
Properties pane (Figure 12-88).

Figure 12-88 Test results

In the events pane, you can see the successful invocations and responses. The
Configurations pane displays the details of the module that you have been
testing (see Figure 12-89 on page 435). Notice the concept of an emulator. If the
module diagram contains interfaces for the implementation that are not yet ready
for testing, you can ask to emulate that component. This gives the you the option
to provide output using the test facility, instead of invoking the actual
implementation of that interface.

434 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 12-89 Test configuration editor

12.5 The location simulator

A location server is required for the sample application to retrieve the
location-based information for the originator of the service and available
members of the group. This information is compared against the location of the
originator to determine the closest resource. As many readers will not have
access to a real location server a location simulator has been developed that
exposes a Web service interface. We do not discuss the design and
development of the location simulator in this redbook, however the source code
is included in the additional material section for installation and review. In this
section, will provide a high level description of the implementation to assist you
with the replication of the demo scenario.

The location simulator includes the following methods that can be invoked either
by a Java client or Web Service consumer such as a BPEL process
(Figure 12-90 on page 436 shows the class diagram):

� getLocation

Provides the ability to specify an URI with a requested and accepted
accuracy. If the acceptable accuracy cannot be met or the URI is not found in
the database, a service exception will be returned. Successful processing of
the request returns a LocationInfo object which includes variables such as the
latitude and longitude. This method is used by the BPEL to retrieve the
longitude and latitude of all the available members of the group.

 Chapter 12. Implementing the IMS sample service 435

� getTerminalDistance

Provides the ability to specify a URI, latitude and longitude. The server will
then lookup the current location for the specified URI and calculate the
distance between the current location and the specified longitude and
latitude. The method is called with the data returned from the getLocation
method to calculate the distance between the originator and available
members of the group. The return value is an integer that represents the
number of meters between the URIs current location and the specified
longitude and latitude.

� getLocationForGroup

Is a convenience function that allows multiple URIs to be specified for a given
requested and acceptable accuracy. Functionally there is no difference
between calling the getLocation method multiple times and calling
getLocationForGroup once.

Figure 12-90 Location server class diagram

The data store behind the location simulator is a flat file that details the location
information for URIs. This file is called terminallocation.db and stored in c:\ for
Windows and /root for Linux. An example configuration file to customize can be
located from Appendix C, “Additional material” on page 637, and an example is
shown in Example 12-10.

Example 12-10 Example terminallocation.db file

this file contains the terminal locations, fields are # separated
lines beginning with a # are treated as comments
the field order is URI, latitude, longitude, altitude, accuracy
this file will need to be customized to meet the installation

436 Developing SIP and IP Multimedia Subsystem (IMS) Applications

requirements
sip:caller@9.42.170.160:5070#89.89#12.12#1278#1
sip:philippe@9.42.170.160:5998#89.89#12.12#1278#1
sip:callum@9.42.170.160:5999#89.89#62.12#1278#1
sip:cameron@9.42.170.160:5060#89.89#12.12#1278#1
sip:sipphone@9.42.171.130#89.00#10.10#1278#1
sip:sipp@9.42.171.130#89.00#10.19#1278#1
sip:callum@9.42.171.135#89.89#12.13#1278#1
sip:rebecca@9.42.171.135#89.89#12.15#1278#1

Information regarding the installation and configuration of the location server can
be found in 13.2.2, “Location server setup” on page 448.

 Chapter 12. Implementing the IMS sample service 437

438 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Chapter 13. Sample IMS application test
environment

This chapter provides an overview of the test environment that was set up and
used to test the FindHelp sample IMS application. It describes the necessary
configuration for setting up the environment, running test scenarios and for
problem determination and resolution.

This chapter contains the following:

� Overview of the test environment

� Setting up the test environment

� Executing the test scenarios

� Problem determination and resolution

13

© Copyright IBM Corp. 2007. All rights reserved. 439

13.1 Overview of the test environment

The test environment allow for end-to-end testing of the FindHelp sample IMS
application. Our test scenario include the execution of the following use cases:

� Administrator adds service topic

� Technician’s publishing of presence information

� Caller request for FindHelp service topic LockOut

To execute these use cases, we created a test environment that included both
Linux and Windows systems. The Linux test server hosted various IMS
components and the FindHelp SIP Servlet. Installed on the Windows test
machine were the simulated SIP traffic clients, SIP telephony clients and the
BPEL engine containing the FindHelp BPEL process.

The following products and components were installed on the Linux test
machine:

� IBM WebSphere Application Server Version 6.1

Provides a converged HTTP/SIP application server for the SIP and IMS
components.

� IBM WebSphere Presence Server Version 6.1.0

Group list management and presence information is provided by the IBM
WebSphere Presence Server which includes the IBM WebSphere Group List
Server.

� IBM WebSphere Telecom Web Services Server Version 6.1.0

For the testing of the IMS sample application we use only the Parlay X Third
Party Call Control functionality of the IBM WebSphere Telecom Web Services
Server for the call setup between the SIP softphones.

� IBM WebSphere IP Multimedia Subsystem Connector Version 6.1.0

Provides the ISC Diameter Rf interface for simulated offline billing.

The WebSphere Process Server was installed on the Windows test machine. It
provided a BPEL execution environment for the FindHelp business process logic.

440 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-1 Test Environment Component Overview

A number of simulated components were also installed in the test environment:

� IMS components

Two executable jar files for simulating IMS components were installed in the
test environment:

– Simulated Location server
– Simulated CCF

� SIP traffic

SIPp from Source Forge and SIPp XML scripts were used to generate the SIP
traffic for simulating clients.

� SIP phones

For the call-setup and voice traffic simulation we used two SIP softphones,
SJphone and sipXphone. Two different phones are necessary as they were
installed on the same Windows test machine. Two instances of the same SIP
softphone could not be started on the same machine.

SIP SimulatorSIP Simulator

SIP
Phone

BPEL ChoreographyBPEL Choreography

Group
List

Server

Group
List

Server
Presence

Server
Presence

Server
FindHelp

SIP
Servlet

FindHelp
SIP

Servlet

Simulated
Location
Server

Simulated
Location
Server

Diameter
Rf

Diameter
Rf

Third
Party Call
Control

Third
Party Call
Control

Caller

SIP
Phone

Technician

CallerCallerTechnicianTechnician

131 131 131 131

77

6655

44 33

2211

Simulated
CCF

Simulated
CCF

1010 88 99 1515 1818 1212

171716161111

FindHelpFindHelp

1414

 Chapter 13. Sample IMS application test environment 441

The hardware configuration for the test environment consisted of a Windows
client and a Linux server setup. Figure 13-2 on page 444 provides an overview of
the components deployment on the Windows and the Linux test machines.

� Windows client

The hardware used for the Windows test machine was an IBM Thinkpad T42
with a 1.8 GHz Intel Pentium Processor and 2GB RAM running Windows XP
Professional with Service Pack 2 applied. The available disk space was 20
GB.

� Linux server

The hardware configuration for the Linux test server consisted of the IBM
eServer xSeries® 345 Server with 3GHz Intel Xeon® Processor and 4 GB
RAM running Red Hat Enterprise Linux AS 4.0 Update 3. The available disk
space was 200 GB.

Note: Some of the components can be downloaded as part of the additional
materials for this redbook (see Appendix C, “Additional material” on
page 637). It includes the following:

� SIPp scripts

– Simulated Technician SIPp scripts
– Simulated Caller SIPp scripts

� FindHelp components

– BPEL Flows
– SIP servlet

Note: The minimum requirement for the client hardware is listed here:

� 15 GB free disk space
� 2 GB RAM
� Pentium 1.6 GHz

442 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Note: Hardware requirements

The following information represents the minimum requirements. For
greater performance and scalability, additional hardware may be needed.

� Linux on pSeries®

IBM WebSphere IP Multimedia Subsystem Connector V6.1, IBM
WebSphere Presence Server V6.1, and IBM WebSphere Telecom Web
Services Server V6.1 only supports NEBS-compliant IBM eServer
pSeries servers.

– Processor: Power 5, 1.2 GHz (32- and 64-bit)
– Physical memory: 2 GB recommended
– Disk space: 20 GB of free space v
– Other: CD-ROM or access to shared network drive where CD

images are available

� Linux on Intel

IBM WebSphere IP Multimedia Subsystem Connector V6.1, IBM
WebSphere Presence Server V6.1, and IBM WebSphere Telecom Web
Services Server V6.1 supports BladeCenter® for Intel x86 platforms

– Processor: Pentium 4, 2.4GHz (32- and 64-bit)
– Physical memory: 2 GB recommended
– Disk space: 20 GB of free space
– Other: CD-ROM or access to shared network drive where CD

images are available

 Chapter 13. Sample IMS application test environment 443

Figure 13-2 Overview of installed components

Table 13-1 provides a listing of the ports used by the components in the test
environment. You may use other ports, however the setup and configuration
instructions for the components assume that these ports are used. If you use
alternative ports, you must replace the ports in the instructions with the actual
ports in your configuration.

Table 13-1 Test environment port usage

Linux Test Server
lts_ipaddress

Linux Test Server
lts_ipaddress

Test Laptop
localhost

Test Laptop
localhost

SIPp
SIP Client Simulator

SIPp
SIP Client Simulator

CallerCaller

SipXPhone
SIP

Phone

WPS 6.0.0.1
BPEL Choreography

WPS 6.0.0.1
BPEL Choreography

FindHelpFindHelp

Tech1Tech1

Caller

Xlite
SIP

Phone

Tech1

WAS 6.1 AS 3WAS 6.1 AS 3

WS

Tech2Tech2

Presence
Server

Presence
Server

WAS 6.1 AS 1WAS 6.1 AS 1

FindHelp
SIP Servlet
FindHelp

SIP Servlet

Simulated
Location
Server

Simulated
Location
Server

:9081

Tracing/
Test Tools
Tracing/
Test Tools

EtherealEthereal

WAS 6.1 AS 5WAS 6.1 AS 5

3rd
Party Call

Control

3rd
Party Call

Control

WAS 6.1 AS 4WAS 6.1 AS 4

Diameter
Rf

Diameter
Rf

:5060 :5065

WAS 6.1 AS 2WAS 6.1 AS 2

Group
List Server

Group
List Server

:9083

:5060:5070

:5063
:9083

:5065

:5066

:5068

:9080

GLS
Admin
GLS
Admin

:9081

:5060

Terminallocation.db

:5069

:9080

:9084

CCF
Simulator

CCF
Simulator

Component IP-Address SIP Traffic
Port

HTTP Traffic
Port

Diameter
Traffic Port

FindHelp SIP Servlet <lts_ipaddress> :5060

Simulated Location <lts_ipaddress> :9080

Group List Server <lts_ipaddress> :5063 :9081 (xcap)

GLS Admin Console <lts_ipaddress> :9081

444 Developing SIP and IP Multimedia Subsystem (IMS) Applications

13.2 Setting up the test environment

The step-by-step instructions for installing the different components in the test
environment is described in Appendix B, “Installing the sample application test
environment” on page 531. In this section we describe the necessary
configuration that you need to perform to set up the test environment.

13.2.1 Group List Server setup

The Group List Server is configured using resource_list and rls_services
documents that describe the group and group members to be used by the
sample application.

The file lockout_techies.xml contains the list of members that form the group
lockout_techies. This file is available as part of the additional materials that you
can download for this redbook (see Appendix C, “Additional material” on
page 637). Example 13-1 on page 446 shows the listing of the
lockout_techies.xml document.

The <list> element contains 5 <entry> elements, each of these identifying a
technician and his SIP URI.

Presence Server <lts_ipaddress> 5065

Diameter Rf <lts_ipaddress> :9083 3868

CCF Simulator <lts_ipaddress> 3868

3rd Party Call Control <lts_ipaddress> :5069 :9084

FindMe BPEL <wtl_ipaddress> :9081

Tech1 SIPp <wtl_ipaddress> :5065

Tech2 SIPp <wtl_ipaddress> :5066

Caller SIPp <wtl_ipaddress> :5068

Tech1 SIP softphone <wtl_ipaddress> :5060

Caller SIP softphone <wtl_ipaddress> :5070

Component IP-Address SIP Traffic
Port

HTTP Traffic
Port

Diameter
Traffic Port

 Chapter 13. Sample IMS application test environment 445

Example 13-1 Lockout resource_list document

<?xml version="1.0" encoding="UTF-8"?>
<rl:resource-lists xmlns:rl="urn:ietf:params:xml:ns:resource-lists">
<rl:list name="lockout_techies">

<rl:entry uri="sip:tech1@itso.ral.ibm.com">
 <rl:display-name>Cameron Martin</rl:display-name>

</rl:entry>
<rl:entry uri="sip:tech2@itso.ral.ibm.com">

 <rl:display-name>Callum Jackson</rl:display-name>
 </rl:entry>
 <rl:entry uri="sip:tech3@itso.ral.ibm.com">

 <rl:display-name>Philippe Bazot</rl:display-name>
 </rl:entry>
 <rl:entry uri="sip:tech4@itso.ral.ibm.com">

 <rl:display-name>Rebecca Huber</rl:display-name>
 </rl:entry>
 <rl:entry uri="sip:tech5@itso.ral.ibm.com">

 <rl:display-name>Jochen Kappel</rl:display-name>
 </rl:entry>
 </rl:list></rl:resource-lists>

You make use of the command line interface to create the members in the GLS
server. The command is run in the directory where the GLS client was installed
using the following syntax:

./xcap_put.sh -user username -password pwd -filename
<root_directory>/lockout_techies.xml -content_type
application/resource-lists+xml
http://hostname:port/services/resource-lists/users/username/lockout_
techies.xml

Where:

� username

Is the name of a GLS user having the admin authority (in our case it is
GLSUser1)

� pwd

Is the chosen password for username

� <root_directory>

Is the directory where lockout_techies.xml file has been stored

� hostname

Is the server host or IP address of the GLS server

446 Developing SIP and IP Multimedia Subsystem (IMS) Applications

� port

Is the port number to use for XCAP protocol (in this case it is 9081)

The rls_services document is named lockout_rls.xml. Its main purpose is to
define the URI associated with the group of technicians which have skills to help
customers with lockout problems. This file is also available as part of the
additional materials that you can download for this redbook (see Appendix C,
“Additional material” on page 637).

Example 13-2 shows the listing of the lockout_rls.xml document. The root
element of an rls-services document is <rls-services>. It contains a <service>
element with a single mandatory attribute, "uri". The URI (in this case it is
sip:lockout@itso.ral.ibm.com) defines the resource associated with the group. It
also contains a <resource-list> element which is the HTTP URI representing the
XCAP element resource. Finally its contains a <packages> element which
contains the presence SIP event package.

You must edit the file lockout_rls.xml document and substitute the value
<lts_ipaddress> with the IP address of your Linux test server. If you use the
same port assignments as in Table 13-1 on page 444, then the port number for
the Group List Management Server will be left as 9081.

Example 13-2 rls_services document for FindHelp service topic: Lockout

<?xml version="1.0" encoding="UTF-8"?>
 <rls-services xmlns="urn:ietf:params:xml:ns:rls-services"

xmlns:rl="urn:ietf:params:xml:ns:resource-lists"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <service uri="sip:lockout@itso.ral.ibm.com">

<resource-list>http://<lts_ipaddress>:9081/services/resource-lists/user
s/group1/lockout_techies.xml</resource-list>
 <packages>
 <package>presence</package>
 </packages>
 </service>
 </rls-services>

You also make use of the command line interface to create the document in the
GLS server. It is run from the directory where the GLS client was installed using
the following syntax:

./xcap_put.sh -user username -password pwd -filename
<root_directory>/redbook_rls.xml -content_type
application/rls-services+xml

 Chapter 13. Sample IMS application test environment 447

http://hostname:port/services/rls-services/users/username/lockout_rl
s.xml

Where:

� username

Is the name of a GLS user having the admin authority (in our case it is
GLSUser1)

� pwd

Is the chosen password for username

� <root_directory>

Is the directory where redbook.xml file has been stored

� hostname

Is the server host or IP address of the GLS server

� port

Is the port number to use for XCAP protocol (in this case it is 9081)

13.2.2 Location server setup

You deploy the simulated Location server by importing the jar file that is included
in the additional materials for this redbook (see Appendix C, “Additional material”
on page 637). The following steps explain the instructions for deploying the
simulated Location server code onto the Linux test server.

1. Open the Integration Solution Console for the WebSphere Application Server
Node 1.

2. Click Applications.

3. Click Install New Applications.

4. Select the radio button Remote File System.

5. Click Browse.

6. Navigate to the file: /root/opt/RBbespoke/

7. Select the radio button for: locationServerEAR.ear

8. Click OK.

448 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-3 Preparing for the Application Installation

9. In the Select Install Options window, accept the defaults, and then click Next.

10.In the Map Modules to Server window, select Location, and then click Next.

11.In the Summary window, verify the installation options.

12.Click Finish.

13.In the Installation Status window, click Save to Master configuration.

14.Once the configuration has been saved, the application must be started.

a. Click Applications → Enterprise Applications.

b. In the Enterprise Applications window, select Location Server.

c. Click Start.

Configure the simulated Location data
1. Copy the file terminallocation.db to the root directory on the Linux test server.

Example 13-3 shows the listing of the location data in terminallocation.db file.

2. Edit termininallocation.db and change <wtl_ipaddress> for each SIP URL to
the IP address where the SIP softphone for that technician is installed. If you
have used a similar configuration to the one for this sample environment, then
this is the IP address for the Windows client test machine.

Example 13-3 Contents of simulated device locations

This file contains the terminal locations, fields are # separated
lines beginning with a # are treated as comments

 Chapter 13. Sample IMS application test environment 449

The field order is URI, latitude, longitude, altitude, accuracy
#List of technicians locations
sip:bruno@<wtl_ipaddress>:5999#89.89#12.14#1278#1
sip:callum@<wtl_ipaddress>:5998#89.89#14.12#1278#1
sip:cameron@<wtl_ipaddress>:5060#89.89#12.12#1278#1
sip:jochen@<wtl_ipaddress>:5095#89.89#12.15#1278#1
sip:philippe@<wtl_ipaddress>:5997#89.89#13.12#1278#1
sip:rebecca@<wtl_ipaddress>:5996#89.89#12.15#1278#1
#simulated FindHelp Caller location
sip:caller@<wtl_ipaddress>:5070#89.89#12.13#1278#1

13.2.3 Application deployment

The following applications must be deployed for executing the IMS use cases for
the FindHelp sample service.

FindHelp BPEL Flow
The following instructions explain how to deploy the FindHelp BPEL flow to the
WebSphere Process Server running on the Windows test machine.

The BPEL flow is included in the file FindHelp_BPEL.zip which is part of the
additional materials for this redbook (see Appendix C, “Additional material” on
page 637).

1. Download the file FindHelp_BPEL.zip to the Windows test machine.

2. Start WebSphere Integration Developer and open the Business Integration
perspective.

3. Import the file FindHelp_BPEL.zip from the local test machine disk to the
WebSphere Integration Developer workspace.

4. Select File → Import → Project Interchange.

5. Click Next.

Attention: Alternatively you may develop your own FindHelp BPEL flow by
following the instructions given in 12.3, “BPEL development” on page 361.

450 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-4 Import FindHelp BPEL Flow

6. Navigate to the directory which contains the file FindHelp_BPEL.

7. Select the file, and click Open.

8. In the Import Projects window, click Select All.

9. Click Finish.

10.Open the FindHelp Assembly diagram.

11.Click + in the Business Integration window to expand the FindHelp business
process.

12.Select FindHelp → FindHelp.

13.Double-click setupcall.

 Chapter 13. Sample IMS application test environment 451

Figure 13-5 Open the Assembly Diagram: FindHelp

14.Click the Interface icon which is on the left side of the
TerminalLocationImport.

Figure 13-6 Click the Interface Icon for TerminalLocationImport

15.Click Binding in the Import: TerminalLocationImport Properties window as
shown in Figure 13-7 on page 453.

Change the IP address in End point to the IP address of the server where
you have installed the LocationServerEar. If you are following the installation
used in this redbook, this is the IP address of the Linux test server,
<lts-ipadress>. Leave :9080 as the port number.

452 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-7 Binding for TerminalLocationImport

16.Click the Interface icon which is on the left side of the
ThirdPartyCallControlImport.

Figure 13-8 Click Interface icon for ThirdPartyCallControlImport

17.Click Binding in the Import: ThirdPartyCallControlImport Properties window
as shown in Figure 13-9.

Change the IP address in End point to the IP address of the server where
you have installed the ThirdPartyCallControl.ear. If you are following the
installation used in this redbook, this is the IP address of the Linux test server,
<lts-ipadress>. Leave :9084 as the port number.

Figure 13-9 Binding for ThirdPartyCallControlImport

 Chapter 13. Sample IMS application test environment 453

18.Click the Interface icon which is on the left side of the DiameterRfImport.

Figure 13-10 Click the Interface icon for DiameterRfImport

19..Click Binding in the Import: DiameterRfImport Properties window as shown
in Figure 13-11.

Change the IP address in End point to the IP address of the server where
you have installed the Diameter Web service. If you are following the
installation used in this redbook, this is the IP address of the Linux test server,
<lts-ipadress>. Leave :9083 as the port number.

Figure 13-11 Binding for DiameterRfImport

20.To start the WebSphere Process Server, select Project → Clean.

21.Select Clean all projects.

22.Click OK.

23.Click the Servers window and select WebSphere Process Server v6.0.

454 Developing SIP and IP Multimedia Subsystem (IMS) Applications

24.Start the WebSphere Process Server by right-clicking and selecting Start.

Observe the server start progress in the Console window. This may take a
few minutes. The server is successfully started when you receive the
message ADMU3000I: Server server1 is open for e-business; process id
is nnnn

25.When the WebSphere Process Server has successfully started:

a. Right-click WebSphere Process Server v6.0 in the Servers window.

b. Select Add and Remove Projects.

26.In the Add and Remove Projects window:

a. Select FindHelpApp under Available projects.

b. Click Add.

27.Click Finish.

SIP Servlet
The following instructions explain how to install and deploy the FindHelp SIP
Servlet to the WebSphere AS 6.1 installed on the Linux Test Server.

1. Copy the file FindHelp.sar to a development machine where WebSphere
AST V6.1 is installed. This is the Windows test machine in this test
environment.

2. Open the WebSphere Application Server Toolkit V6.1.

Select IBM WebSphere → Application Server Toolkit V6.1 → Application
Server Toolkit from the Windows Start command list.

3. Import the FindHelp.sar file into WebSphere AST.

4. Select File → Import → SAR file.

5. Click Next.

6. Click Browse to navigate to the location of the FindHelp.sar file.

7. Click Open.

 Chapter 13. Sample IMS application test environment 455

Figure 13-12 Import SAR file

8. Click Finish.

9. In the Project Explorer window, double-click Other Projects → FindHelp →
SIP Deployment Descriptor.

10.Within the SIP Deployment Descriptor window, click the Source tab.

456 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-13 Select SIP Deployment Descriptor Source

11.Modify Presence Server Hostname to the IP address of the server where
the Presence Server is installed.

a. In the configuration for this sample test environment, this is the IP address
of the Linux test server, <lts_ipaddress>.

b. If you have use the same configuration as in this sample test environment,
the PresenceServerPortNumber should be :5063.

c. Modify the ProcessServerURI to the IP address of the machine where the
WebSphere Process Server is installed, this is the Windows test machine
IP address <wtl_ipaddress> in this sample test environment.

12.Select File → Save to save your changes to the servlet.

13.Export FindHelp.sar by selecting File → Export.

14.Select SAR File.

15.Click Next.

 Chapter 13. Sample IMS application test environment 457

Figure 13-14 Export modified FindHelp.sar

We are now ready to deploy the FindHelp SIP Servlet to the Linux test server,
this is on Server Node 1 for this test environment.

1. Open the Integration Solution Console for the WebSphere Application
Server Node 1.

2. Click Applications.

3. Click Install New Applications.

4. Select the radio button Remote File System.

5. Click Browse.

6. Navigate to the directory where you have exported the FindHfile
/root/opt/RBbespoke/ and select the radio button for FindHelp.sar.

7. Enter FindHelp in Context Root.

458 Developing SIP and IP Multimedia Subsystem (IMS) Applications

8. Click Next.

Figure 13-15 Specify SAR file to upload and install

9. Accept defaults for Installation Options.

10.Click Next.

11.In the Map Modules to Servers window, click Next and verify the installation
summary.

12.Click Finish.

13.You should receive the message Application FindHelp_sar installed
successfully.

14.Click Save directly to the master configuration.

15.Start the FindHelp SIP Servlet.

13.2.4 Device client setup

The Device client used by the technicians and the caller is simulated using
freeware which can be downloaded from Internet.

 Chapter 13. Sample IMS application test environment 459

� SIPp: Is used to implement the SIP dialog support for the FindHelp
application on the client side.

� Softphones: sipXphone and SJPhone are two SIP freeware softphone.
These softphones were used for handling Third Party Call Control (3PCC) in
the FindHelp scenario between the Caller and Tech1.

Figure 13-16 Device Client Setup

SIPp installation
1. Download the SIPp package for Windows platform.

2. Run the SIPp setup wizard.

Simulated Device ClientSimulated Device Client

A-Party Client SimulatorA-Party Client SimulatorTech1 Client SimulatorTech1 Client Simulator Tech2 Client SimulatorTech2 Client Simulator

Xlite
SIP

Phone

Tech1

:5060

Linux Test ServerLinux Test Server

Third
Party Call

Control

Third
Party Call

Control

FindHelp
SIP

Servlet

FindHelp
SIP

Servlet
PresencePresence

:5065 :5060 :5069

A-Party
SIPp script
A-Party

SIPp script

:5068
Tech1

SIPp script
Tech1

SIPp script

:5065
Tech2

SIPp script
Tech2

SIPp script

:5066
SipXPhone

SIP
Phone

Caller

:5070

Note: You can download SIPp from http://sipp.sourceforge.net. The
version we used for this redbook is sipp-unstable 1.1rc4. The Windows .exe
file is sipp-1.1rc4.win32-setup.exe.

460 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://sipp.sourceforge.net

Verify the SIPp installation
Once you have installed SIPp, you can invoke it by starting a SIPp shell:

1. Click Start → Programs → SIPp → Start SIPp shell.

2. A DOS window should appear as shown in Figure 13-17.

Figure 13-17 Starting a SIPp shell

sipXphone setup
1. Start the sipXphone by selecting SIPFoundry → sipXphone → sipXphone

from the Windows Start → Program list.

2. Verify that the Administrator Web Interface is activated.

3. Open the SipXPhone Administration Console by pointing your Web Browser
to:

//localhost:80

4. Enter admin in User name.

5. Click OK.

Note: Depending on whether the software is already installed or not on
your PC, you may have to install cygwin (it is likely to be the case if you
encounter errors running SIPp scripts, such as “error opening display...”).
Cygwin is a Linux-like environment for Windows. It consists essentially of a
DLL (cygwin1.dll) which acts as a Linux API emulation layer providing
substantial Linux API functionality. It also includes a collection of useful
tools.

If you need to install cygwin, you can download it from www.cygwin.com.
Install the latest version (Version 1.5.19-4 was used for our sample test
environment). Choose default options when downloading cycwin
components.

Note: See A.2, “SIP device client installation” on page 502 for instructions
for installing sipXphone.

 Chapter 13. Sample IMS application test environment 461

6. Click Administration → Phone Configuration.

7. Under SIP Servers

a. Change (SIP_TCP_PORT) and (SIP_UDP_PORT) to use port 5070.

b. Scroll to the bottom of the window.

8. Click Save.

Figure 13-18 Configure SIP ports for sipXphone

9. Click Preferences → Lines.

10.In the Line Preferences window under Line Edit, click Edit for the device line.

462 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-19 Edit Device Line for sipXphone

11.Replace the contents of SIP URL: with sip:caller@<wtl_ipaddress>:5070.

12.Click Update.

13.Click Save.

Note: <wtl_ipaddress> is the IP address of the Windows test machine

 Chapter 13. Sample IMS application test environment 463

Figure 13-20 Enter SIP URL for Caller SIP phone

14.Select Administration → Phone Configuration.

15.Click Restart.

16.Click OK.

17.Switch to the sipXphone.

18.Click OK to verify that you want to restart.

SJphone
1. Start the SJPhone by selecting SJphone → SJphone from the Windows

Start → Program list.

2. Right-click the SJphone, and select Options.

3. In the User Information window, enter Tech1 in the Name field.

4. Click OK.

464 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-21 Add User Information

13.2.5 Installing the IBM Diameter CCF Simulator

To run the sample application you need to install a standalone Java application
that simulates a Charging Collection Function (CCF) server.

You can obtain this application by downloading the additional materials for this
redbook available in Appendix C, “Additional material” on page 637.

To install the application:

1. Unzip the DiameterTestServer package to any directory.

2. Switch to the unzip directory.

3. Run the Diameter simulator:

java_bin_root/java -classpath com.ibm.ws.diameter_6.1.0
.jar:TestServer.jar com/ibm/diameter/test/RfdiameterListener
port_number localHostname localHostIpAddress

Where:

– port_number

Is the port number to be used for the Diameter protocol. It is 3868 by
default but if you have installed the simulator and the Rf accounting Web

 Chapter 13. Sample IMS application test environment 465

Service on the same machine it must be set to a different value that
matches the con1.remotePeerPort field in the properties file.

– localHostname

Is the server hostname that runs the simulator

– localHostIpAddress

Is the server IP address that runs the simulator.

Figure 13-22 shows the messages produced by the simulator when it is
successfully started.

Figure 13-22 Starting the Diameter CCF simulator

13.3 Executing the test scenarios

To exercise the test environment, we execute the use cases we created for the
FindHelp sample IMS application:

� Administrator adds service topic
� Technician’s publishing of presence information
� Caller request for FindHelp service topic LockOut

The step-by-step description for running the use cases is provided in the sections
that follow.

Note: The Capability Exchange (CER) messages are messages that are
periodically exchanged between the Diameter client and the server.

466 Developing SIP and IP Multimedia Subsystem (IMS) Applications

13.3.1 Use Case 1: Administrator adds service topic

The FindHelp Service Administrator maintains service topics and associates the
technicians to the appropriate service topic. We have already seen in13.2.1,
“Group List Server setup” on page 445 how you can create the resource-list and
RLS services documents in XML and store them into the Group List Server using
XCAP protocol. The Group List Server also offers a Web user interface to
administer the groups and users.

In this use case, the Administrator creates another service topic, PestControl by
adding another group called PestControl using the GLS Web user interface.

1. Logon to the GLS Console by pointing your Web browser to:
<lts_ipaddress>:9081/GLSAdmin/GLMAdmin

Login with GLSUser1 and the appropriate password.

2. Click Group → Create.

3. Enter the following data:

a. PestControl in Group Name.

b. pest.control in Group Domain.

4. Click Create.

Figure 13-23 Create a Group: PestControl

Next, we add technicians that specialize in pest control. This new resource list
will allow the FindHelp service to identify the technician’s location and availability
which specialize in pest control.

 Chapter 13. Sample IMS application test environment 467

We assume that we have two multi-faceted technicians that are skilled in both
locksmithing and pest control, Tech3 and Tech4.

1. On the Group List Management window, click Group → Add or Remove
Members.

Figure 13-24 Add members to PestControl Group

2. Enter sip:tech3@itso.ral.ibm.com in Member URI.

3. Click Submit.

4. Click Insert Row.

5. Enter sip:tech4@itso.ral.ibm.com in Member URI.

6. Click Submit.

468 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-25 Display members of the PestControl group

You have now created a group PestControl containing two members: tech3 and
tech4. This group is associated with a SIP URL that is used by the service
FindHelp to identify which technicians belong to the PestControl group and are
therefore skilled in PestControl.

13.3.2 Use Case 2: Publish Technician Status

The lockout technicians publish their availability and presence status. For this
test case scenario, the SIP control traffic is being simulated by SIPp using XML
scripts. We provide two scripts which simulate publishing two of the technicians
but you may duplicate and change the scripts to simulate more technicians if
desired.

Publish_technician1.xml and publish_technician2.xml are SIPp scripts that
publish the presence information for Tech1 and Tech2 users, respectively. These
scripts simply perform a SIP_PUBLISH or submit presence information to the
presence server.

1. Edit the publish_technician1.xml file.

2. Change <wtl_ipaddress> to the IP address of the Windows test machine.

3. Change <tech1_phone_port> to port which the SIP softphone for Tech1 is
listening.

 Chapter 13. Sample IMS application test environment 469

Example 13-4 Edit publish_technician1.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE scenario SYSTEM "sipp.dtd">

<!-- ## -->
<!-- Objective: -->
<!-- -->
<!--Publish_Tech1 -->
<!-- -->
<!--This script sends a PUBLISH request for Tech1 -->
<!--The following strings must be changed before executing -->
<!-- this script: -->
<!-- <wtl_ipaddress> - ip-address of the test machine with the -->
<!-- SIP softphone for Tech1 installed -->
<!-- <tech1_phone_port> - port which the SIP softphone for -->
<!-- Tech1 is listening -->
<!-- Date: -->
<!-- 29-June-2006 -->
<!-- -->
<!-- ## -->

<scenario name="Publish_tech1">

 <!-- ~~~-->
 <!-- Publish first user from event list -->
 <!-- ~~~-->

 <send>
 <![CDATA[

 PUBLISH sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Max-Forwards: 70
 From: <sip:cameron@itso.ral.ibm.com>;tag=[call_number]
 To: <sip:cameron@itso.ral.ibm.com>
 Content-Type: application/pidf+xml
 Via: SIP/2.0/[transport] [local_ip]:[local_port]
 CSeq: 1 PUBLISH
 Call-ID: [call_id]
 Expires: 60
 Event: presence
 Content-Length:[len]

 <?xml version="1.0" encoding="UTF-8"?>
 <presence entity="cameron@itso.ral.ibm.com"
xmlns="urn:ietf:params:xml:ns:pidf">
 <tuple id="1234560001">
 <status>

470 Developing SIP and IP Multimedia Subsystem (IMS) Applications

 <basic>open</basic>
 </status>
 <contact>sip:cameron@<wtl_ipaddress>:<tech1_phone_port></contact>
 </tuple>
 </presence>

]]>
 </send>

 <recv response="200" optional="false">
 </recv>

</scenario>

4. Repeat Step 2 and 3 for Publish_Technician2.xml.

We are now ready to execute the scripts.

5. Open a DOS command window and navigate to the directory where SIPp is
installed.

6. Type the command in Example 13-5.

a. Substitute <rb_scr_dir> with the directory where you have stored the
modified Publish_Technician1.xml script.

b. Substitute <lts_ipaddress> with the IP address of the Linux test server
where the Presence server is installed.

c. Substitute <ps_port> with the TCP/UDP port number the Presence Server
is using for receiving SIP messages which in this case is port :5065.

Example 13-5 Invoke SIPp with Publish_Tech1.xml

sipp -p 5065 -sf <rb_scr_dir>Publish_Tech1.xml" -trace_msg -m 1
<lts_ipaddress>:<ps_port>

The DOS command window will appear similar to Figure 13-26 on page 472.

Note: Tech1 is using port :5065 and Tech2 is using port :5066 for SIPp on the
Windows test machine in this sample environment configuration. The SIP
softphone for Tech1 is using port :5060. The SIP softphone for caller is using
port :5070.

The SIP softphone for Tech2 was not installed as this would require a third SIP
softphone. If desired, you may download a third (different) SIP softphone or
alternatively install the third SIP softphone on another test machine configured
with a UDP port available on that machine (for example :5060).

 Chapter 13. Sample IMS application test environment 471

Figure 13-26 SIPp result for publish_tech1.xml

Next, we publish Tech2’s status.

1. Open a second DOS command window and navigate to the directory where
SIPp is installed.

2. Type the command in Example 13-6.

a. Substitute <rb_scr_dir> with the directory where you have stored the
modified Publish_Technician2.xml script.

b. Substitute <lts_ipaddress> with the IP address of the Linux test server
where the Presence server is installed.

c. Substitute <ps_port> with the TCP/UDP port number the Presence Server
is using for receiving SIP messages which in this case is port :5065.

Example 13-6 Invoke SIPp with Publish_Tech2.xml

sipp -p 5066 -sf <rb_scr_dir>Publish_Tech2.xml" -trace_msg -m 1
<lts_ipaddress>:<ps_port>

The DOS command window will appear similar to Figure 13-27 on page 473.

472 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-27 SIPp result for publish_tech2.xml

13.3.3 Use Case 3: Caller requests FindHelp Service

The caller has locked himself out of his car and needs a locksmith. He is not sure
where exactly he is located but he has a appointment in the next hour and needs
a lockout service immediately. He invokes the FindHelp service with the topic
Lockout. The FindHelp service finds the closest, available lockout technician and
establishes a call between the caller and the lockout technician.

Note: the SIP PUBLISH message contains the following important
information:

� The target URI is the SIP URI of the Presence Server.

� The “Expires” header indicates the lifetime of the event state publication.

� As specified in RFC3903, an initial PUBLISH request MUST NOT contain a
“SIP-If-Match” header. However, an Event Publication Agent (EPA) must
use this header in order to modify, remove or remove a previously
published state.

� The body of the PUBLISH request carries the published event state in the
form of a PIDF presence format XML document.

 Chapter 13. Sample IMS application test environment 473

The SIPp XML scripts in 13.3.2, “Use Case 2: Publish Technician Status” on
page 469 simulate the technician’s devices. For this use case, we also provide a
SIPp XML script file which simulates the caller invoking the FindHelp service.

Caller_requests_FindHelp.xml is the SIPp script that implements the SIP dialog
for FindHelp application. This script starts a SIP dialog between the caller and
the FindHelp application, using SIP_INVITE command, waits for “100” and “200”
RC, issues a SIP ACK command to acknowledge the reception of “200” RC, then
waits for a SIP INFO message containing the name and phone number of the
technician for which a call is being established, displays that information on the
screen using dos MSG command, and finally waits for the reception of a BYE
command that terminates the session.

Setup the Caller_requests_Findhelp script
1. Edit the file Caller_requests_Findhelp.xml.

2. Change <wtl_ipaddress> to the IP address of the Windows test machine.

3. Change <windows_userid> to the Windows user ID logged on in the Windows
test machine. This will allow a pop-up window to be displayed upon
successful completion of the SIPp script.

4. Change <caller_phone_port> to the port used by the SIP softphone for the
caller. This value will be used to setup the Third-Party call between the caller
and the technician. In this sample scenario, the sipXphone is listening on port
:5070.

Example 13-7 Edit Caller_requests_FindHelp SIPp script

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!-- ## -->
<!-- Objective: -->
<!-- -->
<!-- Caller requests FindHelp service for Lockout service -->
<!-- -->
<!-- This script -->
<!-- sends a SIPINVITE to the FindHelp Service -->
<!-- requesting that the group lockout_techies be used -->
<!-- waits for “100” and “200” RC -->
<!-- issues a SIP ACK to acknowledge receipt of “200” RC -->
<!-- waits for a SIP INFO with technician name and phone nr. -->
<!-- displays popup using DOS MSG command -->

Note: The use of a CSCF is outside of the scope of this use case. The use
case assumes that the user has already registered. All SIP traffic from the
simulated device client is directly routed to the SIP Serlvet.

474 Developing SIP and IP Multimedia Subsystem (IMS) Applications

<!-- waits for BYE command that terminates the session -->
<!-- -->
<!-- The following strings must be changed before executing -->
<!-- this script: -->
<!-- <wtl_ipaddress> - ip-address of the test machine with the -->
<!-- SIP softphone for Tech1 installed -->
<!-- ´ <caller_phone_port> - port which the SIP softphone for -->
<!-- caller is listening -->
<!-- Date: -->
<!-- 29-June-2006 -->
<!-- -->
<!-- ## -->

 <scenario name="Caller requests FindHelp">
 <send retrans="500">
 <![CDATA[

 INVITE sip:FindHelp@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport]
[local_ip]:[local_port];branch=z9hG4bK4F58B3359B841
 From: caller
<sip:caller@<wtl_ipaddress>:<caller_phone_port>>;tag=[call_number]
 To: sut <sip:FindHelp@[remote_ip]:[remote_port]>
 Call-ID: [call_id]
 Cseq: 1 INVITE
 Contact: sip:caller@[local_ip]:[local_port]
 Max-Forwards: 70
 Subject: FindHelp
 P-Charging-Vector:
icid-value=294_1124116770286@47.135.114.87;orig-ioi=scscf1@homedomain.c
om
 Content-Type: text/xml
 Content-Length: [len]

 <?xml version="1.0" encoding="UTF-8"?>
 <FindHelp>
 <group>sip:lockout_techies@itso.ral.ibm.com</group>
 </FindHelp>

]]>
 </send>

 <recv response="100" optional="true" />
 <recv response="180" optional="true" />

 Chapter 13. Sample IMS application test environment 475

 <recv response="200" rtd="true">
 </recv>

 <send>
 <![CDATA[

 ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
 Via: SIP/2.0/[transport]
[local_ip]:[local_port];branch=z9hG4bK4F58B3359B842
 From: caller
<sip:caller@[local_ip]:[local_port]>;tag=[call_number]
 To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
 Call-ID: [call_id]
 Cseq: 1 ACK
 Contact: sip:caller@[local_ip]:[local_port]
 Max-Forwards: 70
 [$1]
 Subject: FindHelp
 Content-Length: 0

]]>
 </send>

 <recv request="INFO">

 <action>
 <ereg regexp="Ringing([[:alnum:]]*) ([[:alnum:]]*)
([[:alnum:]]*)" search_in="msg" assign_to

="3"/>
 <exec command="msg <windows_userid> Call in

progress:[$3]"/>
 </action>
 </recv>

 <send>
 <![CDATA[

 SIP/2.0 200 OK
 [last_Via:]
 [last_From:]

476 Developing SIP and IP Multimedia Subsystem (IMS) Applications

 [last_To:]
 [last_Call-ID:]
 [last_CSeq:]
 Content-Length: 0

]]>
 </send>
 <recv request="BYE"/>
 <send>
 <![CDATA[

 SIP/2.0 200 OK
 [last_Via:]
 [last_From:]
 [last_To:]
 [last_Call-ID:]
 [last_CSeq:]
 Content-Length: 0

]]>
 </send>

</scenario>

Start the WebSphere Process Server and the BPEL flow
FindHelp

If you do not have WebSphere Process Server with the BPEL flow running, you
must start it by performing the following:

1. Start WebSphere Integration Developer.

2. Open the Business Integration Perspective.

3. Click Servers.

Note: The SIPp script for Caller_requests_FindHelp uses UDP/TCP port
:5068 for SIP messages. The SIP softphone for the caller uses :5070.

It is important that the SIP port used by any particular component sending and
listening for SIP messages is used only once for that physical machine. For
example, if the SIP phone is using port :5070 on your Windows test server,
then no other component may use :5070.

 Chapter 13. Sample IMS application test environment 477

4. Right-click WebSphere Process Server V6.0.

5. Select Start.

Publish the technician availability
Follow the steps for executing publish_technician1.xml and
publish_technician2.xml which are detailed above in 13.3.2, “Use Case 2:
Publish Technician Status” on page 469 to publish the technicians availability.

Caller requests FindHelp for lockout service
Start the SIPp script for Caller_requests_FindHelp.xml.

1. Type the command in Example 13-8.

a. Substitute <rb_scr_dir> with the directory where you have stored the
modified Caller_requests_FindHelp.xml script.

b. Substitute <lts_ipaddress> with the hostname or IP address of the
machine which is hosting the SIP Servlet FindHelp. In this sample
environment configuration this is the Linux test server.

c. Substitute <fhss_port> with the TCP/UPD port number assigned to the
FindHelp SIP Servlet for SIP messages on the SIP application server. The
FindHelp SIP Servlet is listening on :5060 in this sample environment.

Example 13-8 Invoke the FindHelp caller requests script

sipp -p 5068 -sf "<rb_scr_path>\Caller_requests_FindHelp.xml"
-trace_msg -m 1 <lts_ipaddress>:<fhss_port>

Tip: The value set in Expires in the SIPp script limits the length of time that
the technicians status remains active. In the example script Expires is set to
60 seconds. Therefore the scripts for publishing the status need to be
executed immediately before executing the Caller_requests_FindHelp script.

478 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-28 SIPp mainflow

Expected results
You may choose to watch the progress of the FindHelp BPEL flow in the
WebSphere Process Server Console. Successful execution of FindHelp will
produce a console log as shown in Figure 13-29.

Figure 13-29 BPEL console output

 Chapter 13. Sample IMS application test environment 479

After you receive the message Ready to call MakeCall with callingParty the
two SIP softphones should ring. If you answer both phones, you will establish a
call between the caller and the nearest active technician.

13.4 Problem determination and resolution

Should your results differ greatly from the expected use case result for Caller
requests above, you may need to perform some problem determination to
resolve any configuration, development or installation problems which exist in
your setup.

For problem determination, it is useful to refer to the diagram in Figure 13-30 to
follow the flow of the use case and trace it step-by-step.

Figure 13-30 Caller requests FindHelp service Use Case Flow

13.5 Step-by-step tracing

Should you encounter problems, the following provides the desired log file
messages for each step within the FindHelp service use case flow.

1. Technicians publish presence to Presence Server.

SIP SimulatorSIP Simulator

SIP
Phone

BPEL ChoreographyBPEL Choreography

Group
List

Server

Group
List

Server
Presence

Server
Presence

Server
FindHelp

SIP
Servlet

FindHelp
SIP

Servlet

Simulated
Location
Server

Simulated
Location
Server

Diameter
Rf

Diameter
Rf

Third
Party Call
Control

Third
Party Call
Control

Caller

SIP
Phone

Technician

CallerCallerTechnicianTechnician

131 131 131 131

77

6655

44 33

2211

Simulated
CCF

Simulated
CCF

1010 88 99 1515 1818 1212

171716161111

FindHelpFindHelp

1414

480 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Check the SIPp log to verify that the outbound SIP PUBLISH is being sent
and the corresponding 200 OK is being returned.

If this is not the case, verify that the destination IP address and port of the
FindHelp servlet is correctly configured.

Example 13-9 Desired message in SIPp log for Technicians publish presence

UDP message sent:

PUBLISH sip:service@9.42.170.173:5065 SIP/2.0
...
--- 2006-06-22 10:43:17
UDP message received [299] bytes :

SIP/2.0 200 OK
...

2. FindHelp SIP Servlet is invoked by the SIPp script.

Check the server log file for the application server node where the FindHelp
SIP Servlet is installed. The file path for the Linux test server in this sample
environment is opt/IBM/WebSphere/AppServer/profiles/AppSrv01/.

If this step executes correctly your log file will contain the desired message as
in Example 13-10.

Example 13-10 Desired message in the FindHelp SIP Servlet logfile

[29/06/06 16:28:55:366 EDT] 0000005f FindHelp I doInvite ENTRY()
[29/06/06 16:28:55:376 EDT] 0000005f FindHelp I
contentBody='<?xml version="1.0" encoding="UTF-8"?>

3. FindHelp SIP Servlet subscribes to the Presence Server.

Check the server log file for the application server node where the FindHelp
SIP Servlet is installed. The file path for the Linux test server in this sample
environment is opt/IBM/WebSphere/AppServer/profiles/AppSrv01/.

If this step executes correctly your log file will contain the desired message as
in Example 13-11.

Example 13-11 Desired message in the FindHelp SIP Servlet logfile

[29/06/06 16:28:55:836 EDT] 0000005f FindHelp I generateSubscribe rc=true

4. The Presence Server subscribes to Lockout group to the Group List Server.
This step allows for:

– Retrieving group members
– Subscription to group content changes

 Chapter 13. Sample IMS application test environment 481

Group information is stored into the GLS.

Since both GLS and PS are installed on the same server it is not possible to
check for exchanged SIP and HTTP messages using Ethereal.

Therefore we recommend enabling a detailed trace on both GLS and PS. To
do so, enable the trace for GLS (com.ibm.gml.*) and/or for PS component
(com.ibm.workplace.* and com.ibm.wkplc.*). Refer to 13.5.1, “Enable SIP
debug tracing on the Linux test server” on page 486 for more information.

a. Click the select component, then All Messages and Trace.

b. Click OK, and then click Save.

5. FindHelp SIP Servlet has received response from the Presence Server.

Check the server log file for the application server node where the Presence
Server is installed. The file path for the Linux test server in this sample
environment is opt/IBM/WebSphere/AppServer/profiles/AppSrv03/.

Example 13-12 Desired message in logfile for receiving response from Presence Server

[29/06/06 16:28:56:477 EDT] 00000064 FindHelp I doNotify() ENTRY

6. FindHelp SIP Servlet invokes BPEL.

Check the server log file for the application server node where the FindHelp
SIP Servlet is installed. The file path for the Linux test server in this sample
environment is opt/IBM/WebSphere/AppServer/profiles/AppSrv01/.

Example 13-13 Desired message in FindHelp SIP logfile

[29/06/06 16:28:59:211 EDT] 00000064 FindHelp I invokeBPEL() ENTRY,
originator=sip:sipp@9.42.171.130 availableGroupMembers=[sip:callum@9.42.171.135,
sip:rebecca@9.42.171.135]
[29/06/06 16:28:59:241 EDT] 00000064 FindHelp I invokeBPEL() set URI for BPEL
to=http://9.42.170.151:9081/FindHelpWeb/sca/setupcall

You can verify that the invocation request has been received by the
WebSphere Process Server by checking the console for the messages
indicated in the Figure 13-31 on page 482.

Figure 13-31 WebSphere Process Server console messages

If this is not the case, you should check the ProcessServerURI in the
deployment descriptor for the FindHelp SIP Servlet to verify that the IP
address for the WebSphere Process Server is set correctly.

482 Developing SIP and IP Multimedia Subsystem (IMS) Applications

7. FindHelp BPEL flow invokes the simulated Location Server.

You can verify that the FindHelp BPEL flow invoked the simulated Location
Server by checking the WebSphere Process Server console for the
messages as listed in Figure 13-32.

Figure 13-32 Desired message in WebSphere Process Server console for FindHelp BPEL calling Location
server

8. Simulated location server returns the results.

When the simulated Location Server has successfully determined the
location, similar messages to the ones in Figure 13-33 will appear in the
WebSphere Process Server Console.

Figure 13-33 Desired message in WebSphere Process Server console on return from calling Location
server

If you do not see these messages, then you should investigate the following
and ensure that:

– The location server was installed and deployed on the Linux test server.

– The end-point for the Location Server in the BPEL flow was set to the
correct IP address of the location server.

– The terminal_location.db file is in the /root directory on the Linux test
server.

9. FindHelp BPEL Flow calls FindHelp SIP Servlet with member to be
contacted.

Verify that the FindHelp BPEL flow called the FindHelp SIP Servlet with the
member to be contacted by checking the WebSphere Process Server console
for the messages listed in Figure 13-34.

Figure 13-34 Desired message in WebSphere Process Server console

 Chapter 13. Sample IMS application test environment 483

You can verify that the request from the FindHelp BPEL flow was received by
the FindHelp SIP Servlet by checking the server log file for the application
server node where the FindHelp SIP Servlet is installed. The file path for the
Linux test server in this sample environment is:
opt/IBM/WebSphere/AppServer/profiles/AppSrv01/

If this step executed correctly the log should appear as in Example 13-14.

Example 13-14 Desired messages in FindHelp SIP Servlet log upon return from FindHelp BPEL flow

[29/06/06 16:29:06:732 EDT] 00000064 FindHelp I invokeBPEL() Callee
returned='sip:callum@9.42.171.135 status=OK
[29/06/06 16:29:06:742 EDT] 00000064 FindHelp I
memberToBeContacted=sip:callum@9.42.171.135 from the list of
availableMembers=[sip:callum@9.42.171.135, sip:rebecca@9.42.171.135]

If this is not the case, you should investigate the binding for the FindHelp SIP
Servlet in the BPEL flow.

10.FindHelp SIP Servlet sends INFO to device client with who is going to contact
them.

Check the server log file for the application server node where the FindHelp
SIP Servlet is installed. The file path for the Linux test server in this sample
environment is opt/IBM/WebSphere/AppServer/profiles/AppSrv01/.

If this step executed correctly the log should appear as in Example 13-15.

Example 13-15 Desired message in FindHelp SIP Servlet logfile

[29/06/06 16:29:06:742 EDT] 00000064 FindHelp I generateInfo ENTRY()
[29/06/06 16:29:06:762 EDT] 00000064 FindHelp I generateInfo EXIT() sent

11.Third Party Call Control calls Caller and Technician1.

The Third Party Call Control now sends a SIP invite to the SIP softphones to
establish a call between caller and Tech1. Both phones should ring. Should
one or both phones not ring, you can verify whether the SIP INVITE arrived
from the Third Party Call Control by capturing a SIP trace in Ethereal. Follow
the instructions given in 13.5.2, “Tracing SIP messages using Ethereal” on
page 488.

484 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-35 Ethereal trace with SIP invite to initiate call between caller and tech1

If the SIP INVITE is in the Ethereal trace, and the phone did not ring, then
check that both phones are listening on the ports which are set in their
respective SIPp scripts.

a. Use the Windows Task Manager to determine the Process ID of the two
SIP softphones.

b. Type the following command in a DOS command window to verify that the
SIP phones are listening on the ports:

netstat -p UDP -ao

c. For the Process ID used by technician1’s SIP softphone you should verify
that the port for Technician1’s SIP softphone is the same as
<tech1_phone_port> in the SIPp script Publish_Technician1.xml.

d. For the Process ID used by the caller’s SIP softphone you should verify
that the port for caller is the same as <caller_phone_port> in the SIPp
script Caller_requests_FindHelp.xml.

 Chapter 13. Sample IMS application test environment 485

12.Diameter Rf calls CCF Simulator and returns.

The Diameter Rf Web Service interface was called, creating a Charging Event
Record in the CCF using the Diameter Protocol. The Diameter message
should appear on the CCF Simulator display.

If the call to the CCF Simulator failed to execute successfully, fault messages
will appear on the WebSphere Process Server console similar to
Figure 13-36.

Figure 13-36 Messages in WebSphere Process Server Console if CCF not installed and configured
correctly

13.5.1 Enable SIP debug tracing on the Linux test server

To trace on the Linux test server components, the SIP debug tracing mode must
be enabled so trace messages can be written to the trace.log file for that
application server node.

1. On the WebSphere Application Integration Solution Console for the
Application Server Node select Troubleshooting → Logs and Trace.

2. Click Server1.

Tip: We recommend that you configure the Linux test server and the
Windows test machine on the same local area network, and not to traverse
firewalls. Firewalls often do not allow UDP traffic and use Network Address
Translation.

486 Developing SIP and IP Multimedia Subsystem (IMS) Applications

3. Click Diagnostic Trace.

4. Click Change Log Detail Levels.

5. Select the Runtime tab.

6. Enter the following in the Groups input window as in Figure 13-37 on
page 487:

=info:com.ibm.ws.sip.=all: com.ibm.com.wsspi.sip.*=all:
com.ibm.ws.udp.*=all: com.ibm.wkplc.*=all: com.ibm.workplace.*=all

7. Click OK.

Figure 13-37 Enabling SIP debug tracing

 Chapter 13. Sample IMS application test environment 487

13.5.2 Tracing SIP messages using Ethereal

You can enable SIP messaging tracing using Ethereal by performing the
following steps:

1. Click Start → Program → Ethereal → Ethereal and you should see the main
Ethereal screen as shown in Figure 13-38.

Figure 13-38 Starting Ethereal

2. Then click the Capture → Interfaces link at the top of your screen. You
should get the popup menu as in Figure 13-39.

Figure 13-39 Capture Interfaces menu

3. Select the right network interface.

4. Click Prepare, and you should see the Capture Options menu as shown
Figure 13-40 on page 489.

488 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-40 Capture Options menu

5. Deselect Capture Packets in promiscuous mode.

6. Select:

a. Update packets in real time

b. Automatic scrolling in live capture

7. Click Start.

Ethereal should start capturing packets on the selected network interface and
the main panel will be displayed as shown Figure 13-41 on page 490.

 Chapter 13. Sample IMS application test environment 489

Figure 13-41 Capturing packets

A popup window showing percentage of captured packets as in Figure 13-42
on page 491 will also be displayed.

490 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-42 Statistics on captured packets

8. You are now looking at a status window that shows how many packets are
being captured. By default Ethereal captures all packets coming from and
going to your IP address. You might see a lot of traffic or just a little traffic
depending upon how much is going on your network. If the reading is all
zeros, try opening up a Web page. If you still do not see captured data, then
you probably have the wrong Interface selected on the Capture options
window. If you have too much traffic you can specify which protocol you’re
interested in by specifying the protocol name in the Filter field.

a. Enter sip.

b. Click Apply.

Only SIP packets will be traced.

9. When you want to terminate the trace mode, click the Stop button on the
Capture popup showing the statistics about captured packets.

10.Ethereal captures data that you can see on the main screen as shown
Figure 13-41 on page 490. The screen contains three frames:

– Frame 1

Is at the top of the window. It shows an overview of the packets that were
received or sent. The source column shows the IP address of the source
of the packet. The destination column the IP address of the destination.
The protocol column tells what protocol the packet was sent with. The info

 Chapter 13. Sample IMS application test environment 491

column lists the specific requests responses. It shows the SIP command,
as well as the SIP URI contained in the SIP request or the response code
in case of a SIP response. It also shows the ports the data traveled on.

– Frame 2

Is in the middle of the window. It shows more detailed information about a
selected packet. You select a packet by clicking it.

– Frame 3

Is at the bottom of the window. It shows the data contained in the packet in
hex format.

11.By clicking Statistics → Flow Graph → General Flow → OK, you can get a
graphical display of the traced packets. Figure 13-43 on page 493 shows the
output produced after tracing the sample “Find Help” application scenario on
the device client side.

492 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-43 Graphical Analysis for the FindHelp scenario

13.6 Log files

A number of log files are maintained by the different components both on the
Windows test client machine and on the Linux test server. The following are
some of the log files that are available in the sample test environment.

 Chapter 13. Sample IMS application test environment 493

WebSphere Process Server
WebSphere Integration Developer contains a server console for the WebSphere
Process Server. Once the console display buffer is filled or a large number of
messages have been issued, you need to view the logfile for messages. The log
file is typically located in the following path:

<wid_root>pf\wps\logs\server1\startServer.log

The default directory, when installed on top of Rational Software Architect, is:

C:\Program
Files\IBM\Rational\SDP\6.0\pf\wps\logs\server1\startServer.log

SIPp Logs
SIPp logs are contained in the sub-directory where the SIPp XML scripts are
stored. SIPp logs are written by default, so it is not necessary to enable logging.

sipXphone
The sipXphone logfiles are contained in the directory where sipXphone is
installed.

Figure 13-44 Access the sipXphone logging configuration

1. In the sipXphone Administration Web console:

a. Select Administration → SIP Log.

b. Click Enable SIP Logging.

Logging for sipXphone is now enabled.

494 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure 13-45 Enabling sipXphone Logging

After executing actions with the sipXphone, you can view the logs with the
sipXphone Administration console.

To view the log, click Reload SIP Log.

SJPhone
To view the SJPhone logs:

1. Right-click the surface of the phone.

2. Select To Advanced Mode.

3. Right-click.

4. Select the option Show Log.

The SJPhone log window should appear. When you make a call the log is
displayed in this window.

5. If you want to clear or copy the log:

a. Right-click within this window.

b. Select Clear or Copy.

WebSphere Application Server
The System logs for the components running on the Linux test server are in
separate logfiles for each application server profile. The logfile used depends
upon which server node of the component that is installed.

The system logs are written to <was_profile>/logs/server1/SystemOut.log.
Where, <was_profile> is the path for the application server profile. An example
would be opt/IBM/WebSphere/AppServer/profiles/AppSrv02.

 Chapter 13. Sample IMS application test environment 495

The following table provides the system log paths configured for this sample
environment setup. The paths in your environment setup may be different due to
your WebSphere Application Server configuration and the components you
installed on each application server.

Table 13-2 Linux test server logfiles

Runtime
components

Logfile path

WebSphere
Application
Server 6.1 AS 1

FindHelp SIP Servlet
Simulated Location
Server

opt/IBM/WebSphere/AppServer/profiles
/AppSrv01/

WebSphere
Application
Server 6.1 AS 2

Group List Server opt/IBM/WebSphere/AppServer/profiles
/AppSrv02/

WebSphere
Application
Server 6.1 AS 3

Presence Server opt/IBM/WebSphere/AppServer/profiles
/AppSrv03/

WebSphere
Application
Server 6.1 AS 4

Diameter RF opt/IBM/WebSphere/AppServer/profiles
/AppSrv04/

WebSphere
Application
Server 6.1 AS 5

3rd Party Call Control opt/IBM/WebSphere/AppServer/profiles
/AppSrv05/

496 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Part 5 Appendixes

Part 5 provides additional information about the installation and configuration of
the test environment and references to related publications and other useful
information, including how to obtain the source code for the sample applications.

Part 5

© Copyright IBM Corp. 2007. All rights reserved. 497

498 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Appendix A. Installing the application
development environment

This appendix describes the process for installing the different tools that were
used in this redbook to develop the SIP and IMS sample applications.

This appendix contains the following:

� Installing the SIP AST

� SIP device client installation

� Installing the IMS Enablement Toolkit

� Installing WebSphere Integration Developer

� Installing the Telecom Web Services Server plug-in

A

© Copyright IBM Corp. 2007. All rights reserved. 499

A.1 Installing the SIP AST
This section provides instructions on how to install the WebSphere Application
Server Toolkit (AST). AST is packaged with the WebSphere Application Server
V6.1, so you initiate the installation through the WebSphere Application Server
LaunchPad.

1. Double-click the Launchpad.exe.

2. Select Application Server Toolkit Installation from the options on the left side
of the window.

Figure A-1 Launchpad for WebSphere Application Server Network Deployment

3. Click Launch the installation wizard for Application Server Toolkit link.

500 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure A-2 IBM WebSphere Application Server Toolkit install wizard

4. Click Next.

5. Accept the License Agreement and click Next.

 Appendix A. Installing the application development environment 501

Figure A-3 Specifying the installation destination

6. You can change the installation destination directory if you so desire.

7. Click Next.

8. Review the summary information.

9. Click Next to begin the installation.

10.Once this has completed, click Finish.

A.1.1 Starting the SIP AST
Start the SIP AST by selecting Start → All Programs → IBM WebSphere →
Application Server Toolkit V6.1 → Application Server Toolkit

A.2 SIP device client installation
Three softphones were used to simulate call-setup and voice traffic for the SIP
sample applications development and the IMS sample application scenarios.
This section describes the installation process for each of the softphones.

502 Developing SIP and IP Multimedia Subsystem (IMS) Applications

A.2.1 SipXphone
The sipXphone is used for both the SIP and the IMS sample application
development scenarios. This section provides instructions on the basic
installation of sipXphone.

1. The file sipXphone-2_6_0_27.exe is available as part of the additional
materials that you can download for this redbook (see Appendix C, “Additional
material” on page 637).

2. Install SipXPhone to the Windows test machine.

a. Copy the SipXPhone install file sipXphone-2_6_0_27.exe to a temporary
directory on the Windows test machine.

b. Double-click the file sipXphone-2_6_0_27.exe.

Figure A-4 Welcome to the InstallShield Wizard for sipXphone

c. Click Next.

Note: The configuration of the each softphone is explained in the respective
chapters where each phone is used.

Note: sipXphone version 2.6 for Windows was installed for this redbook.

 Appendix A. Installing the application development environment 503

d. Accept the license agreement and click Next.

e. Accept the default destination location and click Next.

f. Review the installation settings .

g. Click Install.

h. When the InstallShield Wizard Completed window appears, click
Finish.

3. Verify the sipXphone installation. From the Windows Start → Programs
menu, select SIPfoundry → sipXphone → sipXphone.

Figure A-5 Verify sipXphone installation

4. Enable Administration Web console.

a. Click More → Prefs.

b. Click mysip softphone Web.

c. Leave the admin password blank.

d. Click OK in the Authentication window.

504 Developing SIP and IP Multimedia Subsystem (IMS) Applications

e. Click the box to the right of Enable Web Server?

f. Accept 80 as the HTTP Port.

g. Click OK.

5. Click Restart to restart the sipXphone.

A.2.2 X-Lite
X-Lite is the second SIP softphone which was used for the SIP development
scenarios. This section provides instructions on the installation of X-Lite.

1. Download X-Lite from:

http://www.counterpath.com/index.php?menu=download

2. Install X-Lite to the Windows test machine.

a. Copy the X-Lite install file X-Lite_Win32_1002tx_29712.exe to a
temporary directory on the Windows test machine.

b. Double-click the filename X-Lite_Win32_1002tx_29712.exe.

Figure A-6 Welcome to the X-Lite Setup Wizard

Note: X-Lite version 3.0 for Windows was installed for this redbook.

 Appendix A. Installing the application development environment 505

http://www.counterpath.com/index.php?menu=download

c. Click Next.

d. Accept the license agreement and click Next.

e. Accept the default destination location and click Next.

f. Accept the defaults on the Select Additional Tasks window and click
Next.

3. When the installation is complete, if a window appears asking for restarting
your computer:

a. Select No, I will restart the computer later.

b. Click Finish.

4. Verify the installation of X-Lite.

a. Select X-Lite → X-Lite from the Windows start → Programs menu.

b. Click Close on the SIP Accounts window.

c. The X-Lite phone will appear with the message No SIP accounts are
enabled.

Figure A-7 X-Lite Installation Verification

d. Close the X-Lite phone by clicking X at the top of the phone.

e. Click OK.

506 Developing SIP and IP Multimedia Subsystem (IMS) Applications

f. if a Confirm to Quit window appears, check the box Do not show this
dialog again so the Confirm to Quit dialog won’t appear again.

A.2.3 SJPhone
This section provides instructions on the installation of SJPhone. It is the third
SIP softphone which was used for the SIP and IMS sample applications
development.

1. Download SJPhone from:

http://www.sjlabs.com/

2. Install SJPhone to the Windows test machine.

a. Copy the SJPhone install file SJphone-289a.exe to a temporary directory
on the Windows test machine.

b. Double-click the filename SJphone-289a.exe.

Figure A-8 Welcome to the SJPhone Installation Wizard

c. Click Next.

Note: SJPhone for Windows v.1.60.289a, 06.19.05 was installed for this
redbook.

 Appendix A. Installing the application development environment 507

http://www.sjlabs.com/

d. Accept the license agreement and click Next.

e. When SJphone is finished installing, click Finish. This will start the
SJphone.

3. Setup the installed SJphone.

a. When the Audio Wizard window appears, click Next.

b. Accept the default Use DirectX®, click Next.

c. Accept the defaults for audio devices, click Next.

d. Adjust playback volume, if desired, and click Next.

e. Adjust the microphone recording level, if desired, and click Next.

f. Verify the settings and click Next.

g. Click Finish.

Figure A-9 SJPhone is installed

A.3 Installing the IMS Enablement Toolkit
Before installing the IMS Enablement Toolkit, you must have successfully
installed and tested AST V6.1 (which includes the SIP Toolkit). If AST is not

508 Developing SIP and IP Multimedia Subsystem (IMS) Applications

launched restart it as described above in A.1.1, “Starting the SIP AST” on
page 502

You are now ready to install the IMS Enablement Toolkit. Start by locating the
directory where you have saved the file ims_wtp_update.zip

1. From the AST top menu bar click Help → Software Updates → Find and
Install.

Figure A-10 Software Updates Find and Install

2. In the Feature Update window select Search for new features to install.

3. Click Next.

4. In the Update Sites to Visit window:

a. Click New Archived Site.

b. Navigate to the folder where you have saved ims_wtp_install.zip.

c. Click Open.

5. In the Edit Local Site pop-up window, click OK.

 Appendix A. Installing the application development environment 509

Figure A-11 Edit Local Site pop-up

6. Verify that ims_wtp_install.zip is selected and click Finish.

7. In the Search Results window.

a. Select ims_wtp_install.zip.

b. Verify that Show the latest version of a feature only is selected.

c. Click Next.

Figure A-12 Features Search Results

8. Accept the terms in the feature license agreement and click Next.

510 Developing SIP and IP Multimedia Subsystem (IMS) Applications

9. After verifying the installation location of the feature IMS WTP Tools, click
Finish.

Figure A-13 Verify Install Feature Updates

10.Accept the feature license agreement and click Next.

 Appendix A. Installing the application development environment 511

Figure A-14 Feature Licence Agreement

11.Click Finish to confirm the installation.

12.In the Installation confirmation window, click Install.

13.In the feature verification window, click Install to install
com.ibm.imstools_1.0.0.

512 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure A-15 Verify unsigned feature

14.At the end of the install process, click Yes to accept the restart of the
workbench.

Figure A-16 Completed installation window

A.3.1 Verify the installation of the IMS Enablement Toolkit
1. From the AST top menu bar, click the Help → Software Updates → Manage

Configuration menu.

 Appendix A. Installing the application development environment 513

Figure A-17 Manage AST Configuration

2. Expand the eclipse folder (the eclipse name will be prefixed by the
installation folder name of the place you installed the AST).

3. Select IMS WTP Tools 1.0.0.

4. In the right window, click Show Properties.

5. It should open a new window where you can select General Information.

6. You should see Properties for IMS WTP Tools similar to Figure A-18 on
page 515 to confirm that the IMS Toolkit is correctly installed.

514 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure A-18 Properties for IMS WTP Tools

A.4 Installing WebSphere Integration Developer
You start the installation by running the WebSphere Integration Developer
launchpad.exe.

 Appendix A. Installing the application development environment 515

Figure A-19 The WebSphere Integration Developer Launchpad

1. From the launchpad, select Install IBM WebSphere Integration Developer
v6.0.1.

2. The installer welcome screen will appear. Click Next to start the installation.

3. Accept the license agreement. Click Next.

4. Choose the appropriate installation directory. Click Next.

Note: If you use the extractor.exe to create an installation image the
launchpad will load automatically once the extraction of the images is finished.

516 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure A-20 Select the installation directory

5. Check the Integrated Test Environment check box.

6. Click Next.

Note: A dedicated stand-alone test environment is not covered in this
redbook. If you have already deployed a WebSphere Process Server and
want to use it to test your application, then skip Step 5. Refer to the
instructions about how to deploy your applications to this test environment in
Chapter 16 of the redbook Getting Started with WebSphere Integration
Developer and WebSphere Process Server, SG24-7130.

 Appendix A. Installing the application development environment 517

Figure A-21 Select the environments

7. Select the test environment profiles.

a. Ensure that both check boxes WebSphere Process Server and
WebSphere Enterprise Service Bus are checked.

b. Click Next.

518 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure A-22 Select the test environment profiles

8. A summary of your selected installation options displays. Click Next to start
the installation.

9. When the installation is completed a window will appear summing up the
installation results. Click Next.

 Appendix A. Installing the application development environment 519

Figure A-23 Installation Summary

10.If you are connected to the Internet, select the Launch Rational Product
Updater check box.

11.Click Finish.

520 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure A-24 Launch the product updater

A.4.1 Update WebSphere Integration Developer
The product update process will be launched on completion of the installation
process if you are connected to the Internet and checked the Launch Rational
Product Updater check box.

Note: If you do not have access to the Internet, you can run the product
update at a later point by selecting Help → Software Updates → IBM
Rational Product Updater.

If you prefer to download the fixpack 6.0.1.1 for later update, go to
http://www.ibm.com/software/integration/wid/support and select the
Recommended Fixes link, then click v6.0.1.1. At the bottom of the page you
can download the “Installation Instructions” and wid_6011_fixpack.zip.

 Appendix A. Installing the application development environment 521

http://www.ibm.com/software/integration/wid/support

Figure A-25 The IBM Rational Product Updater

The Installed Products Tab lists all currently installed products. To search for
available updates for these products click Find Updates. The product updater
will connect to the IBM update site and retrieve all available product updates.
These are listed in the Updates tab.

Select the relevant updates and click Install Updates. This starts the product
update.

A.4.2 Apply required fixes
Follow these instructions to download and apply the required fixes for the
integrated IBM WebSphere Process Server. Install the fixes only after you have
updated IBM WebSphere Integration Developer V6.0.1 to Version 6.0.1.1.

1. Point your browser to:

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=we
bsphere+update+installer&uid=swg24008401&loc=en_US&cs=utf-8&lang=en

2. Select your platform (for example, Windows) and download the IBM
UpdateInstaller to a temporary directory on your computer.

Important: You must apply the fixes to able to run the IMS sample
applications in this redbook.

522 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://www-1.ibm.com/support/docview.wss?rs=180&context=SSEQTP&q1=websphere+update+installer&uid=swg24008401&loc=en_US&cs=utf-8&lang=en

3. Extract the archive updi.6000.windows.ia32.zip to the WebSphere
Integration Developer installation directory, for example:

C:\Program Files\IBM\Rational\SDP\6.0\runtimes\bi_v6

or

C:\Program Files\IBM\WebSphere\ID\6.0\runtimes\bi_v6

4. Point your browser to:

http://www-1.ibm.com/support/docview.wss?uid=swg24011932

5. Download the fix APARJR23226.

6. Switch to the updateinstaller directory and launch update.exe.

7. Click Next.

Figure A-26 The update installer welcome screen

8. Select the installation directory (accept the default) and click Next.

9. Select Install maintenance package and click Next.

10.Browse to the fixpack 6.0.1.0-WS-WPS-IF23226.pak and click Next.

11.Confirm the selection.

12.Click Next to begin the installation.

 Appendix A. Installing the application development environment 523

http://www-1.ibm.com/support/docview.wss?uid=swg24011932

Figure A-27 The installation summary

13.Click Finish to exit the install process.

A.5 Installing the Telecom Web Services Server plug-in
In order to view and modify TWSS Mediation flows inside WebSphere Integration
Developer it is necessary to install the Telecom Web Services Server plug-in and
extract the ESB Mediation Flows.

1. Unzip the TWSS for Windows installation file into a temporary directory.

2. Switch to the nodesetup sub-directory.

3. Click setup. This starts the installation wizard for TWSS Node Configuration.

4. Click Next.

5. Click Next on the confirmation window.

524 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure A-28 Start the TWSS Node Configuration wizard

6. Enter your WebSphere Application Server directory.

Note: You need to have a WebSphere Application Server V6 installed.

There are two options to choose from:

1. You already have a stand-alone WebSphere Application Server
installation. Then choose the install directory, for example:

C:/Program Files/IBM/WebSphere/AppServer

2. You can select the directory of the integrated WebSphere Application
Server that is part of for example the Rational Application Developer. In
this case the installation directory would be similar to this one:

C:/Program Files/IBM/Rational/SDP/6.0/runtimes/base_v6

 Appendix A. Installing the application development environment 525

Figure A-29 Select WebSphere Application Server directory

3. Accept the confirmation of installation and click Next.

4. Click Finish to exit the wizard.

5. Copy the following directory from the twss sub-directory of your WebSphere
Application Server installation directory to:
<WID_Install_Root>/eclipse/plugins

Figure A-30 Plug-in directories to import into WID

Attention: To install the Eclipse plug-in properly you need to start WebSphere
Integration Developer with the -clean option.

526 Developing SIP and IP Multimedia Subsystem (IMS) Applications

A.5.1 Extract the ESB mediation flows and import them into WID
Switch to the esb subdirectory from the temporary directory where you unzip the
TWSS for Windows installation file into

From the directory where you unzipped the TWSS for Windows installation file:

1. Go to the esb sub-directory.

2. Click setup.

3. This starts the installation wizard. Click Next.

Figure A-31 TWSS Enterprise Service Bus installation wizard

4. Accept the licence agreement. Click Next.

 Appendix A. Installing the application development environment 527

Figure A-32 Accept Licence Agreement

5. On the confirmation window, click Next.

6. Enter the directory where you want to install TWSS Enterprise Service Bus.

528 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure A-33 Select installation directory

7. Accept the confirmation of installation. Click Next.

8. Click Finish to exit the wizard.

9. Switch back to the esb sub-directory of the place that you have just used for
installation.

10.Copy the Parlay X mediation flows shown in Figure A-34 into:
<WID_install_Root>\runtimes\bi_v6\TWSS\ESB

Figure A-34 Parlay X mediation flows

 Appendix A. Installing the application development environment 529

530 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Appendix B. Installing the sample
application test environment

This appendix provides the step-by-step description of the installation process for
the sample application test environment.

This appendix contains the following:

� “IBM WebSphere Application Server 6.1”

� “IBM WebSphere Telecom Web Services Server”

� “IBM WebSphere Group List Server component”

� “IBM WebSphere Presence Server component”

� “IBM WebSphere Diameter Enabler component”

B

© Copyright IBM Corp. 2007. All rights reserved. 531

B.1 IBM WebSphere Application Server 6.1
This section describes the process for installing the WebSphere Application
Server Network Deployment on both Linux and Windows operating systems.

The outline of the installation processes consists of preparing the install image
and running the launchpad.

1. Create an install directory.

– On Windows: mkdir C:\temp\WAS61

2. Copy the install image on the install directory.

– For Windows

Copy the was.cd.6100.nd.windows.ia32.zip install image into the
WAS61 directory.

– For Linux

Copy the was.cd.6100.nd.linux.ia32.tar.gz install image into the WAS61
directory.

3. Unpack the install image.

Navigate to the directory <temp>/WAS61.

– For Windows

Use the unzip utility to unzip the product image, for example:

unzip ../was/cd.6100.nd.windows.ia32.zip

– For Linux

gzip -cd ../was.cd.6100. .nd.linux.ia32.tar.gz | tar -xvf

4. Start the WebSphere launchpad.

a. On the Command Prompt navigate to the <temp>/WAS61 directory.

b. Run launchpad.exe. The WebSphere Application Server Network
Deployment Screen will appear.

5. Select Launch the installation wizard for WebSphere Application Server
Network Deployment.

Note: The machine on which you install WebSphere Application Server must
be running a supported distributed operating system. For more information
about supported operating systems, see the WebSphere Application Server
V6.1 Information Center.

532 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-1 WebSphere Application Server 6.1 Installation wizard

6. This starts the installation wizard for WebSphere Application Server Network
Deployment installation.

7. Click Next.

 Appendix B. Installing the sample application test environment 533

Figure B-2 Welcome pop-up

8. Accept the license agreement. Click Next.

9. The system prerequisites are checked. Then the features selection panel is
displayed.

10.Check the install of the sample applications box.

11.Click Next.

12.Select the installation location.

– For Windows, type:

c:\WebSphere\AppServer as the installation path

– For Linux, type:

/opt/IBM/WebSphere/Appserver

13.Click Next.

Important: You need to install these samples at this time, because you will
not be able to do this later.

534 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-3 WebSPhere Installation Directory

14.Next you choose the type of WebSphere Application Server environment to
install. Choose Application Server.

Note: For the purpose of running the sample application in this redbook,
we installed a stand-alone server environment.

 Appendix B. Installing the sample application test environment 535

Figure B-4 WebSphere Application Server environments

An application server profile has a default server, named server1. The
application server can be created with the default application and application
samples installed.

15.Click Next to start the installation.

536 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-5 WebSphere Installation in progress

16.When the installation is completed, verify that the status of the installation is
Success.

17.Click Finish.

 Appendix B. Installing the sample application test environment 537

Figure B-6 Installation Results

18.The First Steps console will be displayed.

19.Select Installation Verification.

538 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-7 First Steps console

20.Verify the output of the installation verification tool as in Figure B-8 on
page 540. No errors should be detected.

 Appendix B. Installing the sample application test environment 539

Figure B-8 Installation verification tool

B.2 IBM WebSphere Telecom Web Services Server
This section describes the steps required to install IBM WebSphere Telecom
Web Services Server for the Third Party Call Control service.

The process describes the minimum installation required for executing the Third
Party Call Control service in the sample applications. The outline of the
installation processes consist of the following:

� B.2.1, “Create the WebSphere Application Server profile” on page 541
� B.2.2, “Install base binaries” on page 544
� B.2.3, “Configure DB2” on page 546
� B.2.4, “Configure Service Integration Bus” on page 554
� B.2.5, “Configure JDBC” on page 561
� B.2.6, “Tune the Application Server” on page 567
� B.2.7, “Deploy TWSS Applications” on page 570
� B.2.8, “Verify the installation” on page 582
� B.2.9, “Troubleshoot the installation” on page 583

If you need additional functionality, refer to the IBM WebSphere Telecom Web
Services Server Information Center for additional installation steps.

540 Developing SIP and IP Multimedia Subsystem (IMS) Applications

B.2.1 Create the WebSphere Application Server profile
The sample test environment is composed of different WebSphere Application
Server for the IBM IP Multimedia Subsystem components (Presence Server,
Group List Server, IMS Connector and TWSS). Creating a new application profile
removes potential conflicts between the components for resources and also
allows performance tuning of the Java Virtual Machine on a product basis.

1. Switch to <was_root>/firststeps directory.

2. Ensure that the DISPLAY variable is correctly defined:

export DISPLAY=9.1.2.3:0

Where, 9.1.2.3 is the IP address or hostname of the system where the GUI
will be displayed.

3. Start the First steps GUI:

./firststeps.sh

4. In the First steps menu, click Profile management tool, as in Figure B-9 on
page 542.

Note: The installation instructions assume that WebSphere Application Server
6.1 and DB2 are already installed and configured on the machine. If you
require detailed instructions regarding the installation of these products,
consult the following resources:

� DB2 Universal Database for Linux, UNIX® and Windows Information
Center

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp

� WebSphere Application Server 6.1 Information Center

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

 Appendix B. Installing the sample application test environment 541

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r1/index.jsp

Figure B-9 First steps menu

5. The Profile Management Tool will appear. Click Next.

6. In the Environment Selection window, select Application server from the
environments, and then click Next.

542 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-10 Environment selection for the Profile Management Tool

7. For the Profile Creation Options, select Typical Profile Creation, and then
click Next.

8. Enable administrative security.

a. Check the Enable administrative security box.

b. Enter the User name and Password for the new Application Server.

c. Click Next.

 Appendix B. Installing the sample application test environment 543

Figure B-11 Enabling Administration Security

9. The summary of the new Profile is shown. Click Create.

10.The profile is created and the completion screen will appear.

a. Deselect all options.

b. Click Finish to close the Profile Management Tool.

B.2.2 Install base binaries
TWSS has several binaries available to install. Different binaries are installed
depending on the functionality required. Each binary installation process is based
on the same menu structure with slightly different values for the installation and
setup path. Table B-1 lists the properties for installing the different binaries.

544 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Table B-1 TWSS Components and settings for installation

1. Login to the system as root.

2. Ensure that the DISPLAY variable is correctly defined:

export DISPLAY=9.1.2.3:0

Where, 9.1.2.3 is the IP address or hostname of the system where the GUI
will be displayed.

3. Change to the setup file location as specified in Table B-1.

4. Run the installation wizard:

./setup

Select a language. Click OK.

5. In the Welcome window, click Next.

6. Accept the License Agreement.

a. Read the license agreement carefully.

b. Tick the check box to accept.

c. Click Next.

7. Click Next.

8. Specify the installation destination directory.

a. Modify the directory installation field to correspond to the values in
Table B-1.

b. Click Next.

Component Name Setup File Location Installation Directory

ESB extensions esb /opt/IBM/TWSS

Web Services services /opt/IBM/TWSS

Administration Console adminconsole /opt/IBM/WebSphere/AppServer
/systemApps/isclite.ear/iclite.war

Node Configuration nodesetup /opt/IBM/WebSphere/AppServer

Service Platform serviceplatform /opt/IBM/TWSS

 Appendix B. Installing the sample application test environment 545

Figure B-12 Binary installation directory

9. Once the installation has completed, a summary of the installation settings
will be displayed. Click Next.

10.In the completion window, click Finish to close the installation wizard.

B.2.3 Configure DB2
TWSS utilizes database tables for storing configuration, runtime, and logging
information. Components of the IBM WebSphere products for telecommunication
are designed to use DB2 or Oracle databases. The process presented here
describes configuration for DB2 only.

Note: Repeat the steps above starting from Step 3 for installing the different
components contained in Table B-1 on page 545.

Note: It assumes that DB2 8.2 fix pack 4 has been installed. If you require
detailed instructions regarding the installation, consult the following resource:

� DB2 Universal Database for Linux, UNIX and Windows Information Center

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp

546 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp

Similar to the installation process in “Install base binaries” on page 544 different
tables are installed depending on the functionality used in TWSS. DB2
databases and tables are created using the script crtsrvDb2.sh. Multiple versions
of this scripts were created for the installation of the TWSS binaries. These will
be used for different sections of the database configuration. The invocation
mechanism is common across all versions of the script. The scripts are invoked
using twelve arguments which modify the behavior of the script execution.

Table B-2 Script arguments

1. Log into the system as root.

Argument Description

Database server hostname This value must be the hostname and domain (for
example machine1.ibm.com)

Note: Localhost should not be used even if the
database is hosted locally.

Database server connection port This value is normally 50000

Database name This can be any valued DB2 database name,
however TWSS610 was used for this example

Database alias This can be any valued DB2 database alias,
however TWSS was used for this example

Database locale For this sample test environment, this value was
set to US

Database server instance ID In this example, this value was set to db2inst1

Database server instance
password

Database user ID In this example, the user ID was set to db2inst1

Database user ID password

Path and file name of DDL file This value will change depending on the request
that is being made

Database (re)create This determines if the script will drop the database,
and recreate at the beginning of the script.

Local Database Is the database that will be used for the TWSS
hosted locally

Remote Database Server Node
Name

This is not appropriate if the database is being
hosted locally

 Appendix B. Installing the sample application test environment 547

2. Change/modify permissions.

a. Change the permission of /opt/IBM/TWSS/ESB/crtsrvDb2.sh:

chmod 755 /opt/IBM/TWSS/ESB/crtsrvDb2.sh

b. Modify the permission of /opt/IBM/TWSS/ServicePlatform/crtsrvDb2.sh:

chmod 755 /opt/IBM/TWSS/ServicePlatform/crtsrvDb2.sh

c. Modify the permission of /opt/IBM/TWSS/IMSServices/crtsrvDb2.sh:

chmod 755 /opt/IBM/TWSS/IMSServices/crtsrvDb2.sh

3. Switch to a user ID with database administrator authority, such as db2inst1:

su - db2inst1

4. Change directory to the location of the ESB binaries:

cd /opt/IBM/TWSS/ESB

5. Execute the following command:

./crtsrvDb2.sh <fully qualified hostname> 50000 TWSS61 TWSS US
db2inst1 xxxxxxxx db2inst1 xxxxxxxx /opt/IBM/TWSS/ESB/SPMDbDb2.ddl
true true

Press Enter twice to create the database configuration.

Note: The xxxxxxxx and xxxxxxxx is the database server instance
password and database userid password, respectively, in:

./crtsrvDb2.sh <fully qualified hostname> 50000 TWSS61 TWSS US
db2inst1 xxxxxxxx db2inst1 xxxxxxxx /opt/IBM/TWSS/ESB/SPMDbDb2.ddl
true true

548 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-13 Installation of the Service Policy Manager Database configuration

6. Execute the following command:

./crtsrvDb2.sh <fully qualified hostname> 50000 TWSS61 TWSS US
db2inst1 xxxxxxxx db2inst1 xxxxxxxx /opt/IBM/TWSS/ESB/ESBDbDb2.ddl
false true

Press Enter twice to create the database configuration.

 Appendix B. Installing the sample application test environment 549

Figure B-14 Installation of the ESB Database configuration

7. Change directory to the location of the Service Platform binaries:

cd /opt/IBM/TWSS/ServicePlatform

8. Execute the following command:

./crtsrvDb2.sh <fully qualified hostname> 50000 TWSS61 TWSS US
db2inst1 xxxxxxxx db2inst1 xxxxxxxx
/opt/IBM/TWSS/ServicePlatform/AdminDbDb2.ddl false true

Press Enter twice to create the database configuration.

550 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-15 Installation of the Administration Console Database configuration

9. Execute the following command:

./crtsrvDb2.sh <fully qualified hostname> 50000 TWSS61 TWSS US
db2inst1 xxxxxxxx db2inst1 xxxxxxxx
/opt/IBM/TWSS/ServicePlatform/UsageDbDb2.ddl false true

Press Enter twice to create the database configuration.

 Appendix B. Installing the sample application test environment 551

Figure B-16 Installation of the Usage Database configuration

10.Change directory to the location of the IMSServices binaries:

cd /opt/IBM/TWSS/IMSServices

11.Execute the following command:

./crtsrvDb2.sh <fully qualified hostname> 50000 TWSS61 TWSS US
db2inst1 xxxxxxxx db2inst1 xxxxxxxx
/opt/IBM/TWSS/IMSServices/ThirdPartyDbDb2.ddl false true

Press Enter twice to create the database configuration.

552 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-17 Installation of the Third Party Call Control Database configuration

12.Execute the following command:

./crtsrvDb2.sh <fully qualified hostname> 50000 TWSS61 TWSS US
db2inst1 xxxxxxxx db2inst1 xxxxxxxx
/opt/IBM/TWSS/IMSServices/AdminTpcDb2.ddl false true

Press Enter twice to create the database configuration.

 Appendix B. Installing the sample application test environment 553

Figure B-18 Installation of the Third Party Admin Database configuration

B.2.4 Configure Service Integration Bus
TWSS utilizes the WebSphere Application Server Service Integration (SI) bus to
provide the Java Message Service (JMS) messaging platform. The following
steps are the instructions to setup the SI Bus for TWSS:

1. Login to the system as root.

2. Switch to the TWSS WebSphere Application Server profile directory:

cd /opt/IBM/WebSphere/AppServer/profiles/AppSrv05/bin

Where, AppSrv05 is the profile hosting TWSS.

3. Start the application server. Enter:

./startServer.sh server1

4. Load a compatible Internet Browser (such as FireFox, Mozilla or Internet
Explorer®).

5. Login to the Integrated Solutions Console.

554 Developing SIP and IP Multimedia Subsystem (IMS) Applications

d. Navigate to the Integrated Solutions Console for the appropriate
application server, for example:

http://<hostname>:9064/ibm/console

e. Enter the appropriate username and password.

6. Create a Service Integration bus.

a. Click Service integration → Buses in the navigation panel.

b. Click New.

c. Enter PXNotifyBus.

d. Deselect Bus security.

e. Click Next.

f. Click Finish.

g. Click Save to save changes to the master configuration.

Figure B-19 Create PXNotifyBus SI bus

 Appendix B. Installing the sample application test environment 555

7. Add the Application Server as a member of the SI Bus.

a. Click PXNotifyBus.

b. Under Topology, click Bus members.

c. Click Add.

d. Click Server, then click Next.

e. Click File store, then click Next.

f. Click Next.

g. Click Finish.

h. Click Save to save changes to the master configuration.

Figure B-20 Add an Application Server to the SI Bus

556 Developing SIP and IP Multimedia Subsystem (IMS) Applications

8. Add a bus destination.

a. Click PXNotifyBus.

b. Click Destinations.

c. Click New.

d. For destination type, select Queue. Click Next.

e. In the Identifier field, enter: PXNotifyDestination. Click Next.

f. Select the Bus Member.

g. Click Next.

h. Click Finish.

i. Click Save to save changes to the master configuration.

Figure B-21 Add a bus destination to the SI Bus

9. Create the JMS connection factory.

a. In the navigation panel, click Resources → JMS → JMS providers.

b. Verify Scope is set to Node; if not, expand Scope.

 Appendix B. Installing the sample application test environment 557

c. Select your node from the drop-down list.

d. Click Default messaging provider.

e. Under Additional Properties, click Queue connection factories.

f. Click New.

g. In the Name field, enter: PXNotifyConnectionFactory.

h. In the JNDI name field, enter: jms/PXNotifyConnectionFactory.

i. For the Bus name, select PXNotifyBus.

j. Click Apply.

k. Click Save to save changes to the master configuration.

558 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-22 Defining the Connection Factory

10.Create the JMS queue.

a. In the navigation panel, click Resources → JMS → JMS providers.

b. Click Default messaging provider.

c. Under Additional Properties, click Queues.

d. Click New.

e. In the Name field, enter: PXNotifyQueue.

f. In the JNDI name field, enter: jms/PXNotifyQueue.

 Appendix B. Installing the sample application test environment 559

g. For the Bus name, select PXNotifyBus.

h. For Queue name, select PXNotifyDestination.

i. Click Apply.

j. Click Save to save changes to the master configuration.

Figure B-23 Define the JMS Queue

11.Create the JMS activation specification.

a. In the navigation panel, click Resources → JMS → JMS providers.

b. Click Default messaging provider.

c. Under Additional Properties, click Activation specifications.

d. Click New.

e. In the Name field, enter: PX Notification Activation Spec

560 Developing SIP and IP Multimedia Subsystem (IMS) Applications

f. In the JNDI Name field, enter: eis/PXNotifyActivationSpec

g. For Destination type, select queue.

h. In the Destination JNDI Name field, enter jms/PXNotifyQueue

i. For the Bus name, select PXNotifyBus.

j. Click Apply.

k. Click Save to save changes to the master configuration.

Figure B-24 Define Activation Specification for JMS Provider

B.2.5 Configure JDBC
The WebSphere Application Server communicates with the DB2 database
configured in B.2.3, “Configure DB2” on page 546. To configure the
communication, perform these tasks:

� Create authentication alias on page 562
� Create JDBC Provider on page 563
� Create the data source on page 565

 Appendix B. Installing the sample application test environment 561

Create authentication alias
1. In the navigation panel, click Security → Secure administration,

applications, and infrastructure.

2. Expand Java Authentication and Authorization Service.

3. Click J2C authentication data.

4. Click New.

5. In the Alias field, enter: db2 local alias

6. In the User ID, enter: db2inst1

This is the user_ID that will be used to access the TWSS database.

7. In the Password field, enter the password for db2inst1 user_ID that you
entered above.

8. Click OK.

9. Click Save to save the changes to the master configuration.

562 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-25 J2C Authentication Alias defined for JDBC datasource

Create the JDBC Provider
1. In the navigation panel, click Resources → JDBC → JDBC Providers.

2. Expand Scope.

3. Select your node from the drop-down list.

4. Click New.

5. Select DB2 as the database type from the drop-down list.

6. Select DB2 Universal JDBC Driver Provider for the Provider type.

7. Select Connection pool data source for the Implementation type.

8. Click Next.

 Appendix B. Installing the sample application test environment 563

9. Enter the db2 class paths for your installation; these are normally:

/home/db2inst1/sqllib/java
/home/db2inst1/sqllib/lib

10.Click Next.

11.Verify all values are correct.

12.Click Finish.

13.Click Save to save the changes to the master configuration.

Figure B-26 JDBC Provider defined

564 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Create the data source
1. Click the JDBC provider, created in “Create the JDBC Provider” on page 563.

2. Click Data sources.

3. Click New.

4. In the JNDI name field, enter: jdbc/SOADB

5. From the Component-managed authentication alias drop-down list, select
db2 local alias.

6. Click Next.

7. In the Database name field, enter TWSS.

8. In the Driver type field, select Type 4 to specify the connectivity type of the
data source.

9. In the Server name field, enter the <server_name> (localhost).

10.In the Port number field, enter the port_number (normally 50000).

11.Click Next.

12.Verify the values are correct.

13.Click Finish.

14.Click Save to save the changes to the master configuration.

 Appendix B. Installing the sample application test environment 565

Figure B-27 Data Source created for TWSS

15.To test the database connection:

a. Select the tick box of the created data source.

b. Click Test Connection.

566 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-28 Data source tested successfully

B.2.6 Tune the Application Server
Tuning of the Application Server depends on the services required by TWSS.
The following steps describe the process for tuning the application server for
Third Party Call Control For high performance Web service connections, enable
in process connections (enableInProcessConnections).

Note: You can find additional instructions for tuning the application server in
the TWSS Information Center at:

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r1/index.jsp?top
ic=/com.ibm.twss.javadoc.doc/adminconpublicjavadoc/com/ibm/soa/commo
n/mbean/package-summary.html

 Appendix B. Installing the sample application test environment 567

http://publib.boulder.ibm.com/infocenter/wtelecom/v6r1/index.jsp?topic=/com.ibm.twss.javadoc.doc/adminconpublicjavadoc/com/ibm/soa/common/mbean/package-summary.html

1. In the Integrated Solutions Console navigation panel, click Servers →
Application Servers.

2. Select the application server where the services are deployed.

3. Expand Web Container Settings.

4. Click Web Container.

5. Click Custom Properties.

6. Under Additional Properties.

a. Click New.

b. For the Name, enter: enableInProcessConnections

c. For the Value, enter: true

d. Click OK.

7. Click Save.

Figure B-29 Web Container configuration for TWSS

568 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Enable the EJB Container data source.

1. In the Integrated Solutions Console navigation panel, click Servers →
Application Servers.

2. Select the application server where the services are deployed.

3. Under Container Settings:

a. Click EJB Container Settings.

b. Click EJB container.

4. From the Default data source JNDI name menu:

a. Select jdbc/SOADB.

b. Click OK.

5. Click Save.

Figure B-30 EJB Container Configuration for TWSS

 Appendix B. Installing the sample application test environment 569

B.2.7 Deploy TWSS Applications
TWSS is divided into a number of EAR files for installation. The number of files
you have to install depends on the required functionality. There are base EAR
files that must be installed, and then there are application specific EAR files. The
following process describes the installation steps for the base EAR files, and for
Third Party Call Control functionality.

The topics in this section are:

� “Install the admission EAR file” on page 570
� “Install the fault and alarm EAR file” on page 572
� “Install the network resources EAR file” on page 573
� “Install the PX notification EAR file” on page 575
� “Install the traffic shaping EAR file” on page 577
� “Install the usage EAR file” on page 578
� “Install the Third Party Call Web Service” on page 580
� “Restart the application server” on page 581

Install the admission EAR file
1. In the Integrated Solutions Console navigation panel, click Applications →

Enterprise Applications.

2. Click Install.

3. Click Browse to locate admission.ear.

4. Select Show me all installation options and parameters.

5. Click Next.

6. On the Preparing for the application installation page, retain the defaults.
Click Next.

7. On the Application Security Warnings page, click Continue.

8. On the Select installation options page, retain the defaults. Click Next.

9. On the Map modules to servers page, select the check box for each module.
Click Next.

10.On the Select current backend ID page, select the correct database type:
DB2UDBNT_V8_1 for DB2

Click Next.

Important: You must ensure that the application server is restarted after the
creation of the SI Bus and JMS configuration, some application will fail to start
successfully if you do not restart the application server.

570 Developing SIP and IP Multimedia Subsystem (IMS) Applications

11.On the Provide JSP reloading options for Web modules page, retain the
defaults. Click Next.

12.Click Map default data sources for modules containing 2.x entity beans.
Select the check box EJB modules.

13.In the Specify authentication method area, select the db2 local alias for the
Authentication data entry. Click Apply.

14.Verify that the correct JNDI name is selected: jdbc/SOADB

15.Click Next.

16.Click the Map security roles to users or groups link.

17.Map the SOAAdministrator to the desired users, groups.

a. Select the check box for the SOAAdministrator.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

18.Map the AdmissionControlRole to the desired users, groups, or both.

a. Select the check box for the AdmissionControlRole.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

19.Click Next.

20.On the Ensure all unprotected 2.x methods have the correct level of
protection page. Verify that the Uncheck option is selected.

21.Click Next.

22.Review the summary information.

23.Click Finish.

24.Wait while the EAR is deployed.

25.Click Save.

26.Wait while the EAR is published.

27.Start the application to verify it deployed correctly.

 Appendix B. Installing the sample application test environment 571

a. Select the check box for the application.

b. Click Start.

Install the fault and alarm EAR file
1. In the Integrated Solutions Console navigation panel, click Applications →

Enterprise Applications.

2. Click Install.

3. Click Browse to locate the faultalarm.ear file.

4. Select Show me all installation options and parameters.

5. Click Next.

6. On the Preparing for the application installation page, retain the defaults.
Click Next.

7. On the Application Security Warnings page, click Continue.

8. On the Select installation options page, retain the defaults. Click Next.

9. On the Map modules to servers page, select the check box for each module.
Click Next.

10.On the Select current backend ID page, select the correct database type:
DB2UDBNT_V8_1 for DB2

Click Next.

11.Select the Map default data sources for modules containing 2.x entity
beans link.

12.Select the check box EJB modules.

a. In the Specify authentication method area, select the db2 local alias for
the Authentication data entry. Click Apply.

b. Verify that the correct JNDI name is selected, jdbc/SOADB

c. Click Next.

13.Select the Map security roles to users or groups link.

14.Map the roles to users or groups.

a. Select the check box for the SOAAdministrator.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

572 Developing SIP and IP Multimedia Subsystem (IMS) Applications

15.Map the FaultAlarmRole to the desired users, groups, or both.

a. Select the check box for the FaultAlarmRole.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

16.Click Next.

17.On the Ensure all unprotected 2.x methods have the correct level of
protection page, verify that the Uncheck option is selected.

18.Click Next.

19.Review the summary information.

20.Click Finish.

21.Wait while the EAR is deployed.

22.Click Save.

23.Wait while the EAR is published.

24.Start the application to verify it deployed correctly.

a. Select the check box for the application.

b. Click Start.

Install the network resources EAR file
1. In the Integrated Solutions Console navigation panel, click Applications →

Enterprise Applications.

2. Click Install.

3. Click Browse to locate the file networkresources.ear.

4. Select Show me all installation options and parameters.

5. Click Next.

6. On the Preparing for the application installation page, retain the defaults.
Click Next.

7. On the Application Security Warnings page, click Continue.

8. Click Select current backend ID.

9. Select the correct database type DB2UDBNT_V8_1 for DB2.

10.Click Next.

 Appendix B. Installing the sample application test environment 573

11.Click the Map default data sources for modules containing 2.x entity
beans link.

12.Select the check box EJB modules.

13.In the Specify authentication method area, select db2 local alias for the
Authentication data entry. Click Apply.

14.Verify that the correct JNDI name is selected: jdbc/SOADB

Click Next.

15.Click Map security roles to users or groups.

16.Map the SOAAdministrator roles to users or groups.

a. Select the check box for the SOAAdministrator.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

17.Map the NetworkResourcesRole to the desired users, groups, or both.

a. Select the check box for the NetworkResourcesRole and either Look up
users.

b. Click Search.

c. Select wsadmin.

d. Click the Add button >>.

e. Click OK.

18.Click Next.

19.On the Ensure all unprotected 2.x methods have the correct level of
protection page, verify that the Uncheck option is selected.

20.Click Next.

21.Review the summary information.

22.Click Finish.

23.Wait while the EAR is deployed.

24.Click Save.

25.Wait while the EAR is published.

26.Start the application to verify it deployed correctly.

a. Select the check box for the application.

574 Developing SIP and IP Multimedia Subsystem (IMS) Applications

b. Click Start.

Install the PX notification EAR file
1. In the Integrated Solutions Console navigation panel, click Applications →

Enterprise Applications.

2. Click Install.

3. Click Browse to locate the pxnotification.ear file.

4. Select Show me all installation options and parameters.

5. Click Next.

6. On the Preparing for the application installation page, retain the defaults.
Click Next.

7. On the Application Security Warnings page, click Continue.

8. On the Select installation options page, retain the defaults. Click Next.

9. On the Map modules to servers page, select the check box for each module.
Click Next.

10.On the Select current backend ID page, select the correct database type:
DB2UDBNT_V8_1 for DB2.

Click Next.

11.Click Bind listeners for message-driven beans.

a. Select the check box for pxnotify-delivery-ejb EJB module.

b. Click Apply Multiple Mappings.

c. In the Activation Specification region, select db2 local alias as the
AuthenticationSpec authentication alias. Click Apply.

d. Click Next.

12.Click Map default data sources for modules containing 2.x entity beans.

13. Select the check box EJB modules.

14. In the Specify authentication method area, select the db2 local alias for the
Authentication data entry. Click Apply.

15. Verify that the correct JNDI name is selected: jdbc/SOADB

Click Next.

16.On the Map data sources for all 2.x CMP beans page, retain the defaults.
Click Next.

17.On the Map resource references to resources page.

a. Select the radio button for Use default method (many-to-one mapping).

 Appendix B. Installing the sample application test environment 575

b. From the Authentication data entry drop-down list, select db2 local alias.

c. Select the pxnotify-delivery-web check box.

d. Click Apply.

e. Select the check box for the pxnotify-delivery-web module. Click Browse.

f. Select the PXNotifyConnectionFactory check box. Click Apply.

g. For the javax.jms.Queue:

i. Click Browse.

ii. Select the PXNotifyQueue check box.

iii. Click Apply.

h. Click Next.

18.Click the Map security roles to users or groups link.

19.Map the SOAAdministrator to users or groups.

a. Select the check box for the SOAAdministrator.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

20.Map the PxNotifyRole to the desired users, groups, or both.

a. Select the check box for the PxNotifyRole.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

21.Click Next.

22.On the Ensure all unprotected 2.x methods have the correct level of
protection page, verify that the Uncheck option is selected.

23.Click Next.

24.Review the summary information.

25.Click Finish.

26.Wait while the EAR is deployed.

576 Developing SIP and IP Multimedia Subsystem (IMS) Applications

27.Click Save.

28.Wait while the EAR is published.

29.Start the application to verify it deployed correctly.

a. Select the check box for the application.

b. Click Start.

Install the traffic shaping EAR file
1. In the Integrated Solutions Console navigation panel, click Applications →

Enterprise Applications.

2. Click Install.

3. Click Browse to locate the traffic.ear file on your local system.

4. Select Show me all installation options and parameters.

5. Click Next.

6. On the Preparing for the application installation page, retain the defaults.
Click Next.

7. On the Application Security Warnings page, click Continue.

8. On the Select installation options page, retain the defaults. Click Next.

9. On the Map modules to servers page, select the check box for each module.
Click Next.

10.On the Select current backend ID page, select the correct database type:
DB2UDBNT_V8_1 for DB2.

Click Next.

11.Click the Map default data sources for modules containing 2.x entity
beans link.

12. Select the check box EJB modules.

13.In the Specify authentication method area, select the db2 local alias for the
Authentication data entry. Click Apply.

14.Verify that the correct JNDI name is selected: jdbc/SOADB

Click Next.

15.Click the Map security roles to users or groups link.

16.Map the SOAAdministrator to users or groups.

a. Select the check box for the SOAAdministrator.

b. Click Look up users.

c. Click Search.

 Appendix B. Installing the sample application test environment 577

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

17.Map the TrafficShapingRole to the desired users, groups, or both.

a. Select the check box for the TrafficShapingRole.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

18.Click Next.

19.On the Ensure all unprotected 2.x methods have the correct level of
protection page, verify that the Uncheck option is selected.

20.Click Next.

21.Review the summary information.

22.Click Finish.

23.Wait while the EAR is deployed.

24.Click Save.

25.Wait while the EAR is published.

26.Start the application to verify it deployed correctly.

a. Select the check box for the application.

b. Click Start.

Install the usage EAR file
1. In the Integrated Solutions Console navigation panel, click Applications →

Enterprise Applications.

2. Click Install.

3. Click Browse to locate the usage.ear file on your local system.

4. Select Show me all installation options and parameters.

5. Click Next.

6. On the Preparing for the application installation page, retain the defaults,
Click Next.

7. On the Application Security Warnings page, click Continue.

578 Developing SIP and IP Multimedia Subsystem (IMS) Applications

8. On the Select installation options page, retain the defaults. Click Next.

9. On the Map modules to servers page, select the check box for each module.
Click Next.

10.On the Select current backend ID page, select the correct database type:
DB2UDBNT_V8_1 for DB2

Click Next.

11.Click the Map default data sources for modules containing 2.x entity
beans link.

12. Select the check box EJB modules.

13.In the Specify authentication method area, select the db2 local alias for the
Authentication data entry. Click Apply.

14.Verify that the correct JNDI name is selected: jdbc/SOADB

Click Next.

15.Click the Map security roles to users or groups link.

16.Map the SOAAdministrator to users or groups..

a. Select the check box for the SOAAdministrator.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

17.Map the UsageRecordRole to the desired users, groups, or both.

a. Select the check box for UsageRecordRole.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

18.Click Next.

19.On the Ensure all unprotected 2.x methods have the correct level of
protection page, verify that the Uncheck option is selected.

20.Click Next.

21.Review the summary information.

 Appendix B. Installing the sample application test environment 579

22.Click Finish.

23.Wait while the EAR is deployed.

24.Click Save.

25.Wait while the EAR is published.

26.Start the application to verify it deployed correctly.

a. Select the check box for the application.

b. Click Start.

Install the Third Party Call Web Service
1. In the Integrated Solutions Console navigation panel, click Applications →

Enterprise Applications.

2. Click Install.

3. Click Browse to locate the thirdparty.ear file on your local system.

4. Select Show me all installation options and parameters.

5. Click Next.

6. On the Preparing for the application installation page, retain the defaults.
Click Next.

7. On the Application Security Warnings page, Click Continue.

8. On the Select installation options page, retain the defaults. Click Next.

9. On the Map modules to servers page, select the check box for each module.
Click Next.

10.On the Select current backend ID page, select the correct database type:
DB2UDBNT_V8_1 for DB2,

Click Next.

11.Click the Map default data sources for modules containing 2.x entity
beans link.

12. Select the check box EJB modules.

13. In the Specify authentication method area:

a. Select the db2 local alias for the Authentication data entry.

b. Click Apply.

c. Verify that the correct JNDI names are selected: jdbc/SOADB

d. Click Next.

14.Click the Map security roles to users or groups link.

15.Map the SOAAdministrator to users or groups.

580 Developing SIP and IP Multimedia Subsystem (IMS) Applications

a. Select the check box for the SOAAdministrator.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

16.Map the ThirdPartyCall_IMS_Role to the desired users, groups, or both.

a. Select the check box for the ThirdPartyCall_IMS_Role.

b. Click Look up users.

c. Click Search.

d. Select wsadmin.

e. Click the Add button >>.

f. Click OK.

17.Click Next.

18.On the Ensure all unprotected 2.x methods have the correct level of
protection page, verify that the Uncheck option is selected.

Click Next.

19.Review the summary information.

20.Click Finish.

21.Wait while the EAR is deployed.

22.Click Save.

23.Wait while the EAR is published.

24.Start the application to verify it deployed correctly.

a. Select the check box for the application.

b. Click Start.

Restart the application server
Once all the applications have been installed, you must restart the application to
ensure the installation is successful.

1. Change directories.

Enter: cd <was_profile_base>/bin

2. Stop the application server.

Enter: ./stopServer.sh server1 -user <username> -password <password>

 Appendix B. Installing the sample application test environment 581

3. Start the application server.

Enter: ./startServer.sh server1

B.2.8 Verify the installation
We verify the installation of the Third Party Call Control Web service by
downloading the WSDL and testing it in the Application Server Toolkit. The
process is outlined in the following steps:

1. Log into the Integrated Solutions Console and select Applications →
Enterprise Applications.

2. Select IMS Third PartyCall application.

3. Under the Web Service Properties.

a. Select Publish WSDL files.

4. Select the IMS Third Party Call_WSDLFiles.zip.

5. Save the file onto the local file system.

6. Unzip the downloaded file onto the local file system.

7. Start the Application Server Toolkit.

a. Create a new Dynamic Web Project.

i. Select File → New → Project.

ii. Select Web → Dynamic Web Project.

iii. Click Next.

b. In the Project Name, enter: 3rdPartyWebProject

c. Click Finish.

8. Right-click the project.

9. Select Import.

10.Select File System.

11.Click Next.

12.Enter the location of the unzipped WSDL in the From Directory.

13.Select the WSDL files.

14.Click Finish.

15.Locate px_tpc_s_2_1.wsdl in the project.

a. Right-click.

b. Select Web Services → Test with Web Services Explorer.

16.Click makeCall in the Web Services Explorer.

582 Developing SIP and IP Multimedia Subsystem (IMS) Applications

17.Fill in two valid SIP addresses.

18.Click Go.

This will setup a call below the two SIP endpoints specified.

B.2.9 Troubleshoot the installation
If the verification test failed, start your troubleshooting by reviewing the SOAP
response and the SystemOut.log installed at <was_profile_base>/logs/server1.
The following are common issues that you might run into, and the respective
resolutions.

The topics in this section are:

� “WSDL invocation failure” on page 583
� “Unable to communicate with the core TWSS Web Services” on page 583
� “No admission control limits for the operation makeCall” on page 585
� “Network Resource Retrieval” on page 585

WSDL invocation failure
The WSDL invocation failed with the error message of:

com.ibm.soa.parlayx21.common.ServiceException: SVC0001: A service error
occurred. Error code is 0001. The SystemOut.log file has the following error
“Error 404: No target servlet configured for uri:
/soa/service_platform/privacy/services/PrivacyInterface”

To resolve the problem follow these steps:

1. Log into the Integrated Solutions Console.

2. Select TWSS Administration Console → Web Services → Single Servers.

3. Select IMS Third Party Call.ear.

4. Select Privacy Client.

5. Delete the End Point URI value.

6. Click OK.

7. Click Review.

8. Click Save.

Unable to communicate with the core TWSS Web Services
The likely causes of this problem include the installation and initialization
problems with TWSS application, and HTTP port number configuration (not
being set to 9080).

 Appendix B. Installing the sample application test environment 583

Example 13-16 TWSS Core Web Services are not available

faultCode: HTTP
 faultString: (404) Not Found
 faultActor: http://localhost:9080
 faultDetail:
 null: WSWS3192E: Error: return code: (404) Not Found
Error 404: No target servlet configured for uri:
/soa/service_platform/usage_record/services/UsageRecordInterface

To resolve the problem follow these steps:

1. Log into the Integrated Solutions Console.

2. Select TWSS Administration Console → Web Services → Single Servers.

3. Select IMS Third Party Call.ear.

4. Select Admission Control Client.

5. Modify the URI so it points to the correct port number for example,
http://localhost:9084/soa/service_platform/admission_control/service
s/AdmissionControlInterface

6. Click OK.

7. Click Review.

8. Click Save.

Repeat Steps 4 to 8 for the following:

– Fault Alarm Client
– Traffic Shaping Client
– UsageRecord Client

9. Select Web Services Platform → Single Servers.

10.Select Traffic Shaping.ear.

11.Select Network Resource Client.

12.Modify the URI so it points to the correct port number for example,
http://localhost:9084/soa/service_platform/admission_control/service
s/AdmissionControlInterface

13.Click OK.

14.Click Review.

15.Click Save.

16.Restart WebSphere Application Server.

584 Developing SIP and IP Multimedia Subsystem (IMS) Applications

No admission control limits for the operation makeCall
The SystemOut.log reports that there are no admission control limits for the
operation makeCall:

CommonUtiliti W com.ibm.soa.parlayx21.thirdparty.utils.CommonUtilities
checkAdmissionControl SOAX0125W:
SOAContextImpl_9.42.170.173_1149781432002_965009116:
ThirdPartyCall_IMS: No admission control limits configured for service
ThirdPartyCall_IMS operation makeCall

The likely cause of this problem is typographical error in the configuration of the
makeCall operation. To resolve the problem follow these steps:

1. Log into the Integrated Solutions Console.

2. Select TWSS Administration Console → Web Service Platform → Single
Servers → Admission Control.ear → Key:
soa.SOAConsoleSettings.attribute.name.AdmissionControlMBean.

3. Select IMS Third Party Call.

4. Select Key: soa.ServiceAttributesMBean.attribute.name.Operations.

5. Click New.

6. In the name and value fields, enter: makeCall

7. Click Add.

8. Click the newly created makeCall link.

9. Set the OperationClusterRateLimit to 5000.

10.Set the OperationLocalRateLimit to 1000.

11.Click OK.

12.Click Review.

13.Click Save.

Network Resource Retrieval
The SystemOut.log reports problems with Network Resource Retrieval.

PivotHandlerW W com.ibm.ws.webservices.engine.PivotHandlerWrapper
invoke WSWS3734W: Warning: Exception caught from invocation to
com.ibm.ws.webservices.engine.dispatchers.java.JavaBeanDispatcher:
WebServicesFault

faultCode:
{http://www.ibm.com/schema/soa/netres/v1_0/local}NetworkResourceRetriev
alFault

 Appendix B. Installing the sample application test environment 585

faultString: com.ibm.soa.sp.netres.NetworkResourceRetrievalFault

faultActor: null

faultDetail:

The likely cause of this problem is typographical error in the configuration of the
Third Party Call Control service. To resolve the problem follow these steps:

1. Log into the Integrated Solutions Console and select TWSS Administration
Console → Web Services → Single Servers → IMS Third Party
Call.ear → Third Party Call Web Service.

2. In the SIP proxy resource specification field type: SIPProxyResourceSpec

3. Click OK.

4. Click Review.

5. Click Save.

B.3 IBM WebSphere Group List Server component
This section describes the steps required to install IBM WebSphere Group List
Server component. The process describes the minimum installation required for
the sample application to successfully execute. The outline of the installation
processes consists of the following:

� B.3.1, “Install base binaries” on page 587
� B.3.2, “Create WebSphere Application Server profile” on page 587
� B.3.3, “Configure DB2” on page 589
� B.3.4, “Configure the LDAP directory” on page 591
� B.3.5, “Configure users and groups” on page 592
� B.3.6, “Configure JDBC and data sources” on page 594
� B.3.7, “Tune the Application Server” on page 599
� B.3.8, “Deploy GLS application” on page 603
� B.3.9, “Install the Self Care portlet” on page 606
� B.3.10, “Install the command line interface” on page 609
� B.3.11, “Administration” on page 609

Note: The installation instructions assume that Linux Red Hat Enterprise
Linux AS 4.0 Update 3 is being used, WebSphere Application Server 6.1, IBM
DB2 Universal Database 8.2 fix pack 4 and IBM Tivoli Directory Server V6.0
are already installed and configured on the machine.

586 Developing SIP and IP Multimedia Subsystem (IMS) Applications

B.3.1 Install base binaries
1. Create /opt/IBM/GroupListServer directory.

2. Copy and/or extract all the binaries into /opt/IBM/GroupListServer directory.

B.3.2 Create WebSphere Application Server profile
An application server is dedicated to running the GLS. This removes the potential
for conflicts between the components for resources and it also allows for
performance tuning of the Java Virtual Machine on a product by product basis.

1. Switch to <was_root>/firststeps directory.

2. Start the first steps GUI ./firststeps.sh.

3. After the wizard opens, perform the following:

a. Select the profile management tool.

b. Click Next.

c. Select Application Server as the type of WebSphere Server environment
to create.

d. Click Next.

e. Choose Typical Profile Creation as profile creation process.

f. Enable Administrative Security.

i. Select Enable Administrative Security.

ii. Enter glsuser as username for the administrator.

iii. Enter the password for the administrator.

iv. Confirm the password.

v. Click Next.

g. Review the profile creation summary.

h. Click Create.

The profile creation complete window will be displayed similar to Figure B-31.

 Appendix B. Installing the sample application test environment 587

Figure B-31 Profile creation in WebSphere Application Server

4. Verify that the security for the profile is properly configured.

Login to the administration console. using glsuser as the administrator
username.

5. In the Integrated Solutions Console navigation panel:

a. Click Security → Secure administration ,applications, and
infrastructure.

b. Under Administrative security, select Enable administrative security.

c. Under Application security, select Enable application security.

d. Under Java 2 security, deselect Use Java 2 security to restrict
application access to local resources.

588 Developing SIP and IP Multimedia Subsystem (IMS) Applications

6. Click Apply.

7. Click Save changes to the master configuration.

B.3.3 Configure DB2
GLS utilizes database tables to store usage records. The process described in
this section is for configuring and creating DB2 databases.

DB2 databases and tables are created using the script crtsrvDb2.sh. The script
requires several parameters that modify the behavior.

Table B-3 GLM610D script arguments

Note: It is assumed that DB2 8.2 with fix pack 4 has been installed.

Argument Description

Database server hostname This value must be the hostname and domain (for
example machine1.ibm.com)

Note: Localhost should not be used even if the
database is hosted locally.

Database server connection port This value is normally 50000

Database name This can be any valued DB2 database name,
however GLM610D was used for this example

Database alias This can be any valued DB2 database alias,
however GLM610D was used for this example

Database locale For this sample test environment, this value was
set to US

Database server instance id In this example, this value was set to db2inst1

Database server instance
password

Database user ID In this example, the user ID was set to db2inst1

Database user ID password

Path and file name of DDL file This value will change depending on the request
that is being made

New database directory This is the file system directory to host the
database. In the example this will be
/home/db2inst1/glsdb

 Appendix B. Installing the sample application test environment 589

1. Login to the DB2 server as an administrator.

2. Enter the following command: su - db2inst1

Where, db2inst1 is the DB2 username.

3. Create a new directory to host the database.

mkdir /home/db2inst1/glsdb

4. Change directory to the location of ctrsrvDb2.sh.

cd /opt/IBM/WebSphere/GroupListServer/Database_Setup/DB2

5. Execute the following command.

./crtsrvDb2.sh

6. Enter the path and filename of the UsageDbDb2.ddl when prompted.

7. A numbered list of parameters will appear.

a. Enter the number of any value you want to change.

b. Press Enter.

c. Enter the new value according to recommendations in Table B-3 on
page 589.

d. Press Enter.

Figure B-32 on page 591 shows the values that were used for the sample test
environment described in this redbook.

Database (re)create This determines if the script will drop the database,
and recreate at the beginning of the script.

Argument Description

590 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-32 IBM GLS Database creation

8. Verify that USAGEPROPERTIES and USAGERECORDS tables were properly created
by entering the following commands:

db2 connect to GML610 user db2inst1
db2 list tables

B.3.4 Configure the LDAP directory
You must then configure the IBM Tivoli Directory Server by creating a new suffix
in the directory. The suffix corresponds to the provider domain under which all
groups are created within WebSphere Group List Server.

1. Open the glminit.ldif file in a text editor.

2. Modify the ibm-slapdSuffix for your environment. For example, the value for
this test environment is:

ibm-slapdSuffix: dc=ibm,dc=com

Figure B-33 Suffix creation in ITDS

 Appendix B. Installing the sample application test environment 591

3. Save and close the file.

4. Start IBM Tivoli LDAP directory (ibmslapd in the sbin directory).

5. Run the following command located in the /bin directory to create the suffix
in the LDAP directory:

ldapmodify -D cn=root -w password -i glminit.ldif

Where, cn=root is the LDAP admin_DN and password is the associated
password.

B.3.5 Configure users and groups
WebSphere Group List Server require that some users and user groups be
created in WebSphere Application Server prior to the installation of the
WebSphere Group List Server.

1. Log in to the WebSphere Integrated Solutions Console.

Enter the user ID and password from B.3.2, “Create WebSphere Application
Server profile” on page 587 .

2. In the Integrated Solutions Console navigation panel, click Users and
Groups → Manage users.

3. Create a user with administrative authority over all groups in the GLS. We
recommend using GLSSuperAdmin as the User ID.

a. Click Create.

b. Enter the User ID. For example, type: GLSSuperAdmin

c. Enter the First name and Last name for the user.

d. Enter the Password for the user.

e. Confirm the password.

f. Click Create.

g. A message indicating successful creation of the user will appear.

h. Click Close.

i. In the Integrated Solutions Console navigation panel:

i. Click Users and Groups > Administrative User Roles.

ii. Click Add.

iii. Enter the User ID for the user created above.

iv. Press Ctrl and click Administrator and Configurator for the Role of
the user.

v. Click OK.

592 Developing SIP and IP Multimedia Subsystem (IMS) Applications

4. Create general users to use IBM WebSphere Group List Server Component.

a. Click Create.

b. Enter GLSUser1 for the User ID.

c. Enter the user First name and Last name.

d. Enter the user password.

e. Confirm the password.

f. Click Create.

g. A message indicating successful creation of the user will appear.

h. Click Close.

5. Create a user group for users accessing IBM WebSphere Group List Server
Component.

a. In the Integrated Solutions Console navigation panel, click Users and
Groups > Manage Groups.

b. Click Create.

c. Enter GLSUsers for the Group name.

d. Click Create.

e. A message indicating successful creation of the group will appear.

f. Click Close.

6. Add users to the user group:

a. Click group_name - GLSUsers.

b. Click Members.

c. Click Add Users.

d. Click Search to display all available users.

e. Click the user_id for each user you want to add to the user group.

The user GLSUser1 should be in the list.

f. Click Add.

g. A message indicating successful addition of users of the group will
appear.

h. Click Close.

The list of configured users should appear as in Figure B-34 on page 594.

 Appendix B. Installing the sample application test environment 593

Figure B-34 User and User Group creation in WebSphere Application Server for GLS

B.3.6 Configure JDBC and data sources
We need to create the data sources in the application server for GLS to be able
to access the database. To connect to the database, we must create a Java
Authentication and Authorization Service (JAAS) authentication alias for the
database, create the JDBC provider, and define the data source using the
Integrated Solutions Console.

The topics in this section are:

� “Create authentication alias for the GLS database” on page 594
� “Create JDBC provider” on page 595
� “Map data source to connection to the GLM610 database” on page 596

Create authentication alias for the GLS database
1. Log in to the WebSphere Integrated Solutions Console.

Enter the user ID and password from B.3.2, “Create WebSphere Application
Server profile” on page 587.

2. In the Integrated Solutions Console navigation panel:

a. Click Security → Secure Administration, applications and
infrastructure.

a. Expand Java Authentication and Authorization Service.

b. Click J2C authentication data.

c. Click New.

3. Enter GLM610D in the alias field.

4. Enter db2inst1 in the user ID field.

This is the user_id that is used to access the GLS database.

5. Enter the password that corresponds to the user_id in the password field.

594 Developing SIP and IP Multimedia Subsystem (IMS) Applications

6. Click OK.

7. Click Save.

Create JDBC provider
1. Log in to the WebSphere Integrated Solutions Console.

Enter the user ID and password from B.3.2, “Create WebSphere Application
Server profile” on page 587.

2. In the Integrated Solutions Console navigation panel, click Resources →
JDBC → JDBC providers.

3. Expand Scope.

4. Select node_name from the drop-down list.

5. Click New.

6. Select DB2 as the database type from the drop-down list.

7. Select DB2 Universal JDBC Driver Provider as the Provider type for your
database.

8. Select Connection pool data source as the Implementation type.

9. Click Next.

10.Enter the values for the class paths for your database.

a. /home/db2inst1/sqllib/java for jar file location

b. /home/db2inst1/sqllib/lib for native library

11.Click Next.

12.Verify all values are correct.

13.Click Finish.

14.Click Save to save the changes to the master configuration.

 Appendix B. Installing the sample application test environment 595

Figure B-35 Create JDBC provider

Map data source to connection to the GLM610 database
1. Log in to the WebSphere Integrated Solutions Console.

Enter the user ID and password from B.3.2, “Create WebSphere Application
Server profile” on page 587.

2. In the Integrated Solutions Console navigation panel:

a. Click Resources → JDBC → JDBC Providers.

b. Click jdbc_provider to open the properties for the JDBC provider you
want to configure the data source for.

c. Click Data sources.

d. Click New.

3. Enter GLMUsageRecords in the Data source name field.

4. Enter jdbc/GLMUsageRecordsDS in the JNDI name field.

5. Select <nodename>/GLM610D from the Component-managed authentication
alias drop-down list.

6. Click Select DB2 Universal JDBC Driver Provider as JDBC provider.

7. Enter GLM610 as the database_name in the Database name field.

8. Enter 4 in the Driver type field to specify the connectivity type of the data
source.

596 Developing SIP and IP Multimedia Subsystem (IMS) Applications

This value corresponds with the driver type property in the data source class.

9. Enter localhost as server_name in the Server name field.

10.Enter 50000 in the Port number field.

This value corresponds with the port number property in the data source
class.

11.Select Use this data source in container managed persistence (CMP)
check box.

12.Click Next.

13.Verify the values are correct.

14.Click Finish.

15.Click Save to save the changes to the master configuration.

 Appendix B. Installing the sample application test environment 597

Figure B-36 Creation of a data source in WebSphere Application Server

16.Test the connection to DB2 database.

a. Select the associated check box for the data source.

b. Click Test connection.

c. A screen similar to Figure B-37 will be displayed.

598 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-37 Test the connection with DB2

B.3.7 Tune the Application Server
We need to configure the GLS resource environment provider.

The topics in this section are:

� “Configure glmconfig. properties file” on page 599
� “Restart the application server” on page 601
� “Configure cache instances” on page 601

Configure glmconfig. properties file
To do so we start by modifying the glmconfig.properties file.

1. Open glmconfig. properties located in the directory:
<install_path>/IBM_Group_List_Manager/Server_Application/Configurati
on

2. Modify the following properties.

– repository URL (if necessary)

– repositoryAdmin

For example, cn=root and repositoryAdminPwd for the LDAP admin
password

– superAdmin

The username for SuperAdmin user

 Appendix B. Installing the sample application test environment 599

– superAdminPswd

The password for SuperAdmin user

– providerDomain

The domain name, for example ibm.com

– xcapRootURL

This URL is used to retrieve XCAP document. The value depends on the
application server instance.

3. Save and close the file.

4. Open a command prompt .

5. Switch to the was_profile_root/bin directory.

6. Run the command:

./wsadmin.sh -username user_name -password password
-wsadmin_classpath script_path/GLMUtil.jar -f
script_path/CreateGLMProps.jacl script_path Node:node_name locale

Where:

– user_name

Represents your WebSphere Application Server administrator user ID
(glsuser for this sample test environment)

– password

Represents the password associated with user_name

– script_path

Represents the path for the GLS configuration files

– node_name

Represents the name of the node where WebSphere Group List Server is
deployed

– locale

Represents the optional parameter that you should specify if you are
going to use a translated version of glmconfig.properties to create the
WebSphere Group List Server resource environment provider.

Figure B-38 on page 601 shows a sample screen from running the command.

Important: Do not use relative paths.

600 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-38 Configuration of the GLS resource environment provider

Restart the application server
1. To stop the server, run the following command from the application server

profile:

was_profile_root/bin/stopServer.sh server_name -username user_name
-password password

Where:

– server_name

Is name of the application server

– user_name

Is the WebSphere Application Server administrator user ID. This
parameter is required if security has been enabled, which is the case for
the GLS application server.

– password

Is the password associated with user_name above. This parameter is
required if security is enabled.

2. Restart the server by running the following command:

was_profile_root/bin/startServer.sh server_name

Where:

– server_name

Is name of the application server

Configure cache instances
The WebSphere Group List Server uses two cache instances. One is for group
objects containing member and attribute information, and the other is for group
access control lists for authorization. Configure cache instances using the
following steps:

 Appendix B. Installing the sample application test environment 601

1. Log in to the WebSphere Integrated Solutions Console.

2. Enter the user ID and password from B.3.2, “Create WebSphere Application
Server profile” on page 587.

3. In the Integrated Solutions Console navigation panel:

a. Click Resources → Cache instances → Object cache instances.

b. Select cell_name for the scope.

4. Create the GLMGroupCache.

a. Click New.

b. Select cell_name for the scope.

c. Enter GLMGroupCache for the Name.

d. Enter services/cache/com/ibm/glm/groupcache for the JNDI name.

e. Enter 10000 for the Cache size.

f. Deselect Dependency ID Support.

g. Click OK.

5. Create the GLMGroupACLsCache.

a. Click New.

b. Select cell_name for the scope.

c. Enter GLMGroupACLsCache for the Name.

d. Enter services/cache/com/ibm/glm/groupaclscache for the JNDI name.

e. Enter 10000 for the Cache size.

f. Deselect Dependency ID Support.

g. Click OK.

6. Create the GLMXcapXmlCache.

a. Click New.

b. Select cell_name for the scope.

c. Enter GLMXcapXmlCache for the Name.

d. Enter services/cache/com/ibm/glm/xcapxmlcache for the JNDI name.

e. Enter 10000 for the Cache size.

f. Deselect Dependency ID Support.

g. Click OK.

7. Create the GLMAdminDomainsCache.

a. Click New.

602 Developing SIP and IP Multimedia Subsystem (IMS) Applications

b. Select cell_name for the scope.

c. Enter GLMAdminDomainsCache for the Name.

d. Enter services/cache/com/ibm/glm/admindomainscache for the JNDI
name.

e. Enter 100 for the Cache size.

f. Deselect Dependency ID Support.

g. Click OK.

8. Click Save to save changes to the master configuration.

Figure B-39 Configuring cache instances

B.3.8 Deploy GLS application
The IBM GLS application is installed as an enterprise application in WebSphere
Application Server.

The topics in this section are:

� “Install GroupListMgr.ear” on page 604
� “Assign access to users” on page 604
� “Define user RunAs role” on page 605

 Appendix B. Installing the sample application test environment 603

� “Start the GLS Application” on page 606

Install GroupListMgr.ear
1. Log in to the WebSphere Integrated Solutions Console.

2. Enter the user ID and password used during the creation of the GLS server
instance in Appendix A, “Installing the application development environment”
on page 499.

3. In the Integrated Solutions Console navigation panel:

a. Click Applications → Install new Application.

b. Click Browse to locate the GroupListMgr.ear file on your system.

4. Click Next → Next → Next → Finish.

5. Click Save to the master configuration.

Assign access to users
1. Click Applications → Enterprise Applications.

2. Click Group List Manager.

3. Under Detail Properties, click Security role to user/group mapping.

4. Assign GLMConfigurator role.

a. Select the check box associated with GLMConfigurator role.

b. Click Look up users.

c. Verify GLMConfigurator appears in the list of roles near the beginning of
the page.

d. Click Search.

e. Click the name of the user who you assigned configurator authority to (this
should be GLSConfigUser).

f. Click >> to move the user to the Selected column.

g. Click OK.

h. The selected user should be listed in the Mapped users column on the
GLMConfigurator row.

5. Assign GLMAdapterClient role.

a. Select the check box associated with GLMAdapterClient role.

Note: Entering asterisk(*), will return all users in the search results,
unless the number of users exceeds the value in the limit field.

604 Developing SIP and IP Multimedia Subsystem (IMS) Applications

b. Click Look up users.

c. Verify GLMAdapterClient appears in the list of roles near the top of the
page.

d. Click Search.

e. Click the name of the user who you assigned operator authority to (this
should be GLSAdapterUser).

f. Click >> to move the user or group to the Selected column.

g. Click OK.

h. The user that you selected is listed in the Mapped users column on the
GLMAdapterClient row.

6. Assign GLMXcapUser role.

a. Select the check box associated with GLMXcapUser role.

b. Click Look up groups.

c. Verify GLMXcapUser appears in the list of roles near the top of the page.

d. Click Search.

e. Click the name of the WebSphere Group List Server group (this should be
GLSUsers) .

f. Click >> to move the group to the Selected column.

g. Click OK.

h. The group you selected is listed in the Mapped groups column on the
GLMXcapUser row.

7. Click OK to save all of the security role to user and group mappings and
return to Enterprise Applications → GroupListMgr.

Define user RunAs role
The GroupListMgr EAR contains predefined RunAs roles. In this section, the
user is identified using the configurator authority.

1. In the Integrated Solutions Console navigation panel:

Note: Entering asterisk(*), will return all users in the search results,
unless the number of users exceeds the value in the limit field

Note: Entering asterisk(*), will return all groups in the search results
unless the number of groups exceeds the value in the limit field.

 Appendix B. Installing the sample application test environment 605

a. Click Applications → Enterprise Applications.

b. Click GroupListMgr.

c. Click User RunAs roles.

2. Under Detail Properties:

a. Enter the username and password for the user with configurator authority,
such as GLSSuperAdmin.

b. Select the check box that corresponds to the GLMConfigurator role.

c. Click Apply.

d. The username that you entered is listed in the User name column on the
GLMConfigurator row.

e. Click OK to save the role assignment and return to Enterprise
Applications → GroupListMgr.

f. Click Save to save to the master configuration.

Start the GLS Application
1. In the Integrated Solutions Console navigation panel, click Applications →

Enterprise Applications.

2. Select Group List Server.

3. Click Start.

4. The GLS application should be started successfully.

5. Check the SystemOut log file for any errors.

B.3.9 Install the Self Care portlet
The Group List Server Self Care portlet provides group and member
administration through a graphical user interface. The portlet is installed in
WebSphere Application Server as an enterprise application.

The topics in this section are:

� “Install GLMAdmin.ear” on page 606
� “Assign access to users” on page 607
� “Start the application” on page 607
� “Verify installation” on page 608

Install GLMAdmin.ear
1. Log in to the WebSphere Integrated Solutions Console.

2. Enter the user ID and password used for the creation of the application
Server for GLS.

606 Developing SIP and IP Multimedia Subsystem (IMS) Applications

3. In the WebSphere Integrated Solutions Console navigation panel, click
Applications → Install new Application.

4. Click Browse to locate the GLMAdmin.war file on your system.

5. Enter a context root for the portlet.

The context root will be combined with the defined servlet mapping, GLMAdmin,
to compose the full URL that users will enter to access the portlet. For
example, if the context root is MyContext, the URL is
http://host:port/MyContext/GLMAdmin.

6. Click Next → Next → Next → Finish.

7. Click Save to save to the master configuration.

Assign access to users
1. In the WebSphere Integrated Solutions Console navigation panel, click

Applications → Enterprise Applications.

2. Click GLMAdmin.

3. Under Detail Properties.

a. Click Security role to user/group mapping.

b. Select GLMAdminPortlet role.

c. Click Look up groups.

d. Search for the group whose members are the WebSphere Group List
Server users who should have access to Group List Management Self
Care. This is the group that you created earlier in the installation.

e. Click the user group you want to provide access to.

f. Click >> to add the group to the Selected column.

g. Click OK.

4. The members of the group that you selected is listed in the Mapped users
column on the GLMAdminPortlet row.

Start the application
1. In the WebSphere Integrated Solutions Console navigation panel:

a. Click Applications → Enterprise Applications.

b. Select the check box associated with the GLMAdmin.

c. Click Start.

d. The Application Status column should indicate a Started status.

 Appendix B. Installing the sample application test environment 607

Verify installation
Verify Group List Management Self Care is correctly installed by performing
the following steps.

1. Upon opening a browser, enter the URL:
http://hostname:port/context_root/GLMAdmin/

Where:

– hostname

Is the server name that runs the GLS application

– context_root

Is the context root specified in Step 5., “Enter a context root for the portlet.”
on page 607 previously.

2. When you access this URL, you will be prompted to enter a username and
password.

a. Enter the username and password of a user who is the member of the
group mapped to the GLMAdminPortlet role (this should be GLSUser1).

b. Then you should see the maim GLS administration portlet menu as shown
in Figure B-40.

608 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-40 GLS Self Care portlet

B.3.10 Install the command line interface
The command line interface is used to access WebSphere Group List Server
through the XDM interface.

1. Verify that you have glmcli.zip file which is needed for the installation.

You can find it in the directory /opt/IBM/Group_List_Server/Tools.

2. Create a new directory glmcli in /opt/IBM/Group_List_Server/Tools.

3. Extract glmcli.zip to the directory you created.

4. Run the chmod command (chmod 755 *.*) on the files so you will have
sufficient authority to run the scripts.

B.3.11 Administration
You can administer GLS with either of two interfaces, the Group List
Management Self Care portlet or the command line interface.

 Appendix B. Installing the sample application test environment 609

Group List Management Self Care portlet
Group List Management Self Care portlet provides group and member
administration through a graphical user interface. Additionally, you can use the
portlet to add and delete groups, add and delete members, delegate and remove
permissions, query both group and member memberships, and to add and
remove user-defined attributes.

Command line interface
The command line interface is used to bulk load groups. You can also use
command line interface to add, delete, and query group memberships.
Example B-1 shows example of how to add new groups in GLS using the
command line interface.

Example: B-1 Command line instruction for adding groups to GLS

./xcap_put.sh -user GLSUSer1 -password itso4you -filename ./redbook.xml
-content_type application/resource-lists+xml
http://localhost:9081/services/resource-lists/users/GLSUser1/RedbookGro
up.xml

 GLM XCAP Client Interface - PUT COMMAND

Response Status was: 201
Response Status Message: Created
Content-Type: application/xcap-diff+xml; charset=UTF-8

Example B-2 on page 610 shows how to retrieve existing groups from GLS using
the command line interface.

Example: B-2 Command line instruction for retrieving existing groups from GLS

./xcap_get.sh -user GLSUser1 -password itso4you -filename ./redbook.xml
http://localhost:9081/services/resource-lists/users/GLSUser1/RedbookGro
up.xml

**
 GLM XCAP Client Interface - GET COMMAND
**
Response Status was: 200
Response Status Message: OK
Content-Type: application/resource-lists+xml; charset=UTF-8

610 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Example B-3 shows how to delete existing groups from GLS with the command
line interface.

Example: B-3 Command line instruction for deleting existing groups from GLS

./xcap_delete.sh -user GLSUser1 -password itso4you
http://localhost:9081/services/resource-lists/users/GLSUser1/RedbookGro
up.xml

 GLM XCAP Client Interface - DELETE COMMAND

Response Status was: 200
Response Status Message: OK
Content-Type: text/html

B.4 IBM WebSphere Presence Server component
This section describes the steps required to install IBM WebSphere Presence
Server component (PS). The process describes the minimum installation
required for the sample application to successfully execute. The outline of the
installation processes consist of the following:

� B.4.1, “Install base binaries” on page 611
� B.4.2, “Create WebSphere Application Server profile” on page 611
� B.4.3, “Configure DB2” on page 612

B.4.1 Install base binaries
1. Create /opt/IBM/PresenceServer directory.

2. Copy and/or extract all the binaries into /opt/IBM/PresenceServer directory.

B.4.2 Create WebSphere Application Server profile
An application server is dedicated to PS. This removes the potential for conflicts
between the components for resources and it also allows for performance tuning
of the Java Virtual Machine on a product by product basis.

Note: The installation instructions assume that Linux Red Hat Enterprise
Linux AS 4.0 Update 3 is being used, WebSphere Application Server 6.1 and
IBM DB2 Universal Database 8.2 fix pack 4 are already installed and
configured on the machine.

 Appendix B. Installing the sample application test environment 611

1. Switch to <was_root>/firststeps directory.

2. Start the first steps GUI ./firststeps.sh.

3. After the wizard opens, perform the following:

a. Select the profile management tool.

b. Click Next.

c. Select Application Server as the type of WebSphere Server environment
to create.

d. Click Next.

e. Choose Typical Profile Creation as profile creation process.

f. Deselect Enable Administrative Security.

g. Click Next.

h. Review the profile creation summary.

i. Click Create.

B.4.3 Configure DB2
PS utilizes DB tables for storing usage records. The following steps describe the
process for creating and configuring DB2.

A new database SOA610D needs to be created for PS. DB2 databases and tables
are created using a script called WPSSetDB2Tables.sh. The script requires
several parameters that modifies the behavior.

Table B-4 SOA610D script arguments

Note: It is assumed that DB2 8.2 with fix pack 4 has been installed.

Argument Description

Database server hostname This value must be the hostname and domain (for
example machine1.ibm.com)

Note: Localhost should not be used even if the
database is hosted locally.

Database server connection port This value is normally 50000

Database name This can be any valued DB2 database name,
however SOA610D was used for this example

Database alias This can be any valued DB2 database alias,
however SOA610D was used for this example

612 Developing SIP and IP Multimedia Subsystem (IMS) Applications

1. Login to the DB2 server as an administrator.

2. Enter the following command: su - dbinst1

Where, dbinst1 is the DB2 username

3. Create a new directory to host the database.

mkdir /home/db2inst1/presencedb

4. Change directory to the location of WPSSetDB2Tables.sh.

cd /opt/IBM/WebSphere/IBMWebSpherePresenceServer/Database_Setup/DB2

5. Execute the following command.

./WPSSetDB2Tables.sh

6. Enter the path and filename of the CreateDB2Tables.ddl when prompted.

7. A numbered list of parameters will appear.

a. Enter the number of any value you want to change.

b. Press Enter.

c. Enter the new value according to recommendations in Table B-4 on
page 612.

d. Press Enter.

Database locale For this sample test environment, this value was
set to US

Database server instance id In this example, this value was set to db2inst1

Database server instance
password

Database user ID In this example, the user ID was set to db2inst1

Database user ID password

Path and file name of DDL file This value will change depending on the request
that is being made

New database directory This is the file system directory to host the
database. In the example this will be
/home/db2inst1/presencedb

Database (re)create This determines if the script will drop the database,
and recreate at the beginning of the script.

Argument Description

 Appendix B. Installing the sample application test environment 613

Figure B-41 shows the values that were used for the sample test environment
described in this redbook.

Figure B-41 IBM PS Database creation

8. Create the usage record tables.

9. Enter the path and filename of the CreateUsageRecordTables.ddl when
prompted.

10.A numbered list of parameters will appear.

11.Verify the database was created properly by typing the following command.

db2 connect to SOA610 user db2inst1
db2 list tables

The list of PS DB2 tables will be displayed as in Figure B-42.

Important: You should enter the same values you entered for the database
name and alias you entered when creating the WebSphere Presence Server
tables. For the database (re)create option, you must enter FALSE since the
database has already been created.

614 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-42 Presence Server DB2 tables

B.5 Create the Service Integration Bus and bus
members

WebSphere Presence Server requires a Service Integration Bus. To create the
Service Integration Bus do the following:

1. Log in to the WebSphere Integrated Solutions Console.

2. Since the security has not been enabled, there is no need to enter a user ID
and password.

3. In the WebSphere Integrated Solutions Console navigation panel:

a. Click Service Integration → Buses.

b. Click New.

c. Enter PS_bus for the name of the new bus.

d. Deselect Bus security.

e. Click Next.

f. Click Finish.

4. Click Save to save changes to the master configuration.

 Appendix B. Installing the sample application test environment 615

Add bus members
1. In the WebSphere Integrated Solutions Console navigation panel.

a. Click Service integration → Buses.

b. Click PS_bus.

c. Under Topology, click Bus members.

d. Click Add.

e. Click Server.

f. Select the appropriate server from the drop-down list.

g. Click Next.

h. Click File store.

i. Click Next.

j. Click Next.

k. Click Finish.

2. Click Save to save changes to the master configuration.

Define the JMS factories
1. In the WebSphere Integrated Solutions Console navigation panel, click

Resources → JMS → JMS providers.

2. Click Default messaging provider for the correct node you want to
configure.

3. Under Additional Properties, click Topic connection factories.

4. Click New.

5. Enter PresenceTCF in the Name field.

6. Enter jms/presenceTCF in the JNDI name field.

7. Select PS_bus for the Bus name.

8. Click Apply.

9. Click Save to save changes to the master configuration.

Define the JMS topic
1. In the WebSphere Integrated Solutions Console navigation panel, click

Resources → JMS → JMS providers.

2. Click Default messaging provider for the correct node you want to
configure.

3. Under Additional Properties, click Topics.

616 Developing SIP and IP Multimedia Subsystem (IMS) Applications

4. Click New.

5. Enter PresencePublishT in the Name field.

6. Enter jms/presencePublishT in the JNDI name field.

7. Select PS_bus for the Bus name.

8. Select Default.Topic.Space for the Topic space.

9. Click Apply.

10.Click Save to save changes to the master configuration.

Define the JMS activation specifications
1. In the WebSphere Integrated Solutions Console navigation panel, click

Resources → JMS → JMS providers.

2. Click Default messaging provider for the correct node you want to
configure.

3. Under Additional Properties, click Activation specifications.

4. Click New.

5. Enter TAS in the Name field.

6. Enter jms/tas in the JNDI name field.

7. Select Topic for the Destination type.

8. Enter jms/presencePublishT for the Destination JNDI name.

9. Select PS_bus for the Bus name.

10.Select Auto-acknowledge for the Acknowledge mode.

11.Select Nondurable for the Subscription durability.

12.Click Apply.

13.Click Save to save changes to the master configuration.

Restart the PS application server
1. To stop the server, run the following command from the application server

profile:

was_profile_root/bin/stopServer.sh server_name

Where:

server_name is the name of the application server (this should be server1).

2. To restart the server, run the following command:

was_profile_root/bin/startServer.sh server_name

 Appendix B. Installing the sample application test environment 617

Where:

server_name is the name of the application server.

B.5.1 Configure JDBC and data source
We need to create the data sources in the application server for the Presence
Server to be able to access the database. To connect to the database we must
perform the following:

� Create a JAAS authentication alias for the database
� Create the JDBC provider
� Define the data source using the Integrated Solutions Console

Create an authentication alias
1. Log in to the WebSphere Integrated Solutions Console.

2. In the navigation panel, click Security → Secure Administration,
applications and infrastructure.

3. Expand Java Authentication and Authorization Service.

4. Click J2C authentication data.

5. Click New.

6. Enter SOA610D in the alias field.

7. Enter db2inst1 in the user ID field; this is the user_id used to access the PS
database.

8. Enter the password that corresponds to user_id in the password field.

9. Click OK.

10.Click Save.

Create a JDBC provider
1. Log in to the WebSphere Integrated Solutions Console.

2. In the navigation panel, click Resources → JDBC → JDBC providers.

3. Expand Scope.

4. Select node_name from the drop-down list.

5. Click New.

6. Select DB2 as the database type from the drop-down list.

7. Select DB2 Universal JDBC Driver Provider as the Provider type for your
database.

8. Select Connection pool data source for the Implementation type.

618 Developing SIP and IP Multimedia Subsystem (IMS) Applications

9. Click Next.

10.Enter /home/db2inst1/sqllib/java for the database class path.

11.Click Next.

12.Verify all values are correct.

13.Click Finish.

14.Click Save to save the changes to the master configuration.

Define data source
1. Log in to the WebSphere Integrated Solutions Console.

2. In the navigation panel, click Resources → JDBC → JDBC Providers.

3. Click jdbc_provider to open the properties for the JDBC provider to
configure.

4. Click Data sources.

5. Click New.

6. Enter WPS DB DataSource in the Data source name field.

7. Enter jdbc/db in the JNDI name field.

8. Select <nodename>/SOA610D from the Component-managed authentication
alias drop-down list.

9. Select DB2 Universal JDBC Driver Provider as JDBC provider.

10.Click Next.

11.Enter SOA610 as the database_name in the Database name field.

12.Enter 4 in the Driver type field to specify the connectivity type of the data
source.

This value corresponds with the driver type property in the data source class.

13.Enter localhost as server_name in the Server name field.

14.Enter 50000 as the port_number in the Port number field.

This value corresponds with the port number property in the data source
class.

15.Select the Use this data source in container managed persistence (CMP)
check box.

16.Click Next.

17.Verify the values are correct.

18.Click Finish.

19.Click Save to save the changes to the master configuration.

 Appendix B. Installing the sample application test environment 619

Figure B-43 Summary of data source definition

Test the connection
1. Select the associated check box for the data source.

2. Click Test connection.

3. You should see a window similar to Figure B-44.

620 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-44 Testing the connection with DB2

B.6 Deploy PS application
The IBM WebSphere Presence Server component is installed as an enterprise
application in the WebSphere Application Server.

1. Log in to the WebSphere Integrated Solutions Console.

2. In the navigation panel, click Applications → Install new Application.

3. Click Browse to locate the WebSpherePresenceServerEAR.ear file on your
system.

4. Click Next → Next → Next → Finish.

5. Click Save to save to the master configuration.

 Appendix B. Installing the sample application test environment 621

Start PS Application
1. In the WebSphere Integrated Solutions Console navigation panel, click

Applications → Enterprise Applications.

2. Select Presence Server .

3. Click Start.

4. The PS application should be started successfully.

5. Check for any errors in the SystemOut log file.

Configure the PS application
1. Open SystemConfiguration.xml with a text editor.

2. Update the values for the following attributes as needed.

Table B-5 SystemConfiguration.xml attributes

Attribute Value

enable-authorization Set value to true to use authorization applications

� You can keep the default

usage-record Set value to true to log usage records

� You can keep the default

subscribe-expiration Set minimum and maximum values to control the expiration
time for SUBSCRIBE requests

� You can keep the default

publish-expiration Set minimum and maximum values to control the expiration
time for PUBLISH requests

� You can keep the default

enable-xproviders Set value to true to enable the Xproviders mechanism

� You can keep the default

glms-configuration Set the values to identify the Group List Server address and
user

� This parameter must contain the SIP address that is
used for SUBSCRIBE requests issued by the PS, and
the user ID and password that is used to retrieve XCAP
documents from the GLS.

scscf-configuration This value is used to specify the SIP address of the S-CSCF
server

622 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-45 on page 623 shows values of the SystemConfiguration file for this
sample application test environment.

Figure B-45 SystemConfiguration.xml file

3. Save and close the file.

4. Open CmdConfigParams.txt with a text editor.

5. Change the following parameters.

Table B-6 CmdConfigParams.txt parameters

asserted-identity Set the value to the URI for the identity of the requestor in the
scheme:identity format

� This parameter MUST contains the asserted identity of
the PS. The whole assert identity must be quoted, and
the “Super Admin” string has to be quoted separately.
Since quote between quote is not accepted, you must
use the " expression. the < and > characters are
not accepted, therefore you must use < and >
expressions

Attribute Value

Attribute Value

cfg.system path_to_SystemConfiguration.xml

 Appendix B. Installing the sample application test environment 623

Figure B-46 on page 624 shows values of the CmdConfigParams file for this
sample application test environment.

Figure B-46 CmdConfigParams.txt file

6. Run the following command:

java -classpath WPSConfigurationUtils.jar: path_to_all_jdbc_drivers
CmdConfig path_to_CmdConfigParams.txt/CmdConfigParams.txt

username database_administrator_user_name
for example:
d2inst1

password database_administrator_password

dbConnectionString jdbc:db2://database_host_name:databas
e_port/database_name
for example:
jdbc:db2://localhost:50000/SOA610

Attribute Value

624 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-47 Running the command

Restart the PS application server
1. To stop the server, run the following command from the application server

profile:

was_profile_root/bin/stopServer.sh server_name

Where:

server_name is the name of the application server (this should be server1)

2. To restart the server, run the following command:

was_profile_root/bin/startServer.sh server_name

Where:

server_name is the name of the application server.

B.7 IBM WebSphere Diameter Enabler component
WebSphere Diameter Enabler component are deployed on the WebSphere
Application Server platform. The sample application only uses the Rf accounting
Web Services, so only the necessary components are deployed. For example,
the support of Rf Accounting does not require any database to be configured.

Important: Enter the following parameters on a single line. JDBC drivers
must be separated by a colon”:” character.

Note: WebSphere Application Server Network Deployment, Version 6.1 must
be installed on the server before beginning the installation of WebSphere
Diameter Enabler components

 Appendix B. Installing the sample application test environment 625

The process outlined here describes the steps for the minimum installation.
Additionally, it describes the steps for installing the simulator that supports basic
interaction with the Diameter client. The outline of the installation processes
consist of the following:

� B.7.1, “Install base binaries” on page 626
� B.7.2, “Create WebSphere Application Server profile” on page 626
� B.7.3, “Deploy the Diameter Enabler application on WebSphere Application

Server” on page 627
� B.7.4, “Deploy Diameter Rf Web Services” on page 634

B.7.1 Install base binaries
1. Create /opt/IBM/Diameter directory.

2. Copy and/or extract all the binaries into /opt/IBM/Diameter directory.

B.7.2 Create WebSphere Application Server profile
An application server dedicated to the Presence Server. This removes the
potential for conflicts between components for resources allowing performance
tuning of the Java Virtual Machine on a product by product basis.

1. Switch to <was_root>/firststeps directory.

2. Start the first steps GUI ./firststeps.sh.

3. After the wizard opens, perform the following.

a. Select the profile management tool.

b. Click Next.

c. Select Application Server as the type of WebSphere Server environment
to create.

d. Click Next.

e. Choose Typical Profile Creation as profile creation process.

f. Deselect Enable Administrative Security to disable Administrative
Security.

g. Click Next.

h. Review the profile creation summary.

i. Click Create.

Note: The installation process assume that Linux Red Hat Enterprise Linux
AS 4.0 Update 3 is being used, and WebSphere Application Server 6.1 is
installed and configured on the machine.

626 Developing SIP and IP Multimedia Subsystem (IMS) Applications

A window similar to Figure B-48 on page 627 will be displayed.

Figure B-48 Diameter profile creation in WebSphere Application Server

B.7.3 Deploy the Diameter Enabler application on WebSphere
Application Server

Complete the following steps to deploy the Diameter Enabler application.

1. Copy com.ibm.ws.diameter_6.1.0.jar to the WebSphere Application Server
plugins directory:

was_root/plugins

2. Open a command prompt.

 Appendix B. Installing the sample application test environment 627

3. Configure the Diameter channels.

was_profile_root/bin/wsadmin.sh -username user_name -password
password -f script_path/DiameterChannelInstall.py cell_name
node_name server_name host_name port_number standalone [debug]

Where:

– user_name

Is your WebSphere Application Server user ID

– password

Is the password associated with your user_name

– script_path

Is the path to DiameterChannelInstall.py

– cell_name

Is the name of cell where the server is installed

– node_name

Is the name of node where the server is installed

– server_name

Is the name of the server

– host_name

Is the fully qualified host name where the node is installed

– port_name

Is the port number for the Diameter inbound TCP channel, 3868 preferred

– standalone

Indicates that the script is running in a standalone environment

– [debug]

Enables debugging for the configuration script

Important: You must enter the parameters on a single line.

628 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Figure B-49 Diameter Channel Installation

Restart the application server
1. To stop the server, run the following command from the application server

profile:

was_profile_root/bin/stopServer.sh server_name

Where:

server_name is the name of the application server (this should be server1).

2. To restart the server, run the following command:

was_profile_root/bin/startServer.sh server_name

Where:

server_name is the name of the application server.

Verifying the WebSphere Diameter channel configuration
1. Click Servers → Application servers → server_name → Ports.

2. Verify the endpoint is properly configured.

a. Verify the DiameterNamedEndPoint appears in the list with either of the
following values:

i. Host: *

ii. host_name Port: 38683

3. Verify the DiameterChain is properly configured.

a. Click View associated transports on the DiameterNamedEndPoint row.

b. Verify DiameterChain appears in the list with the following values:

i. Enabled: Enabled

ii. Host: * or host_name Port: 3868

iii. SSL Enabled: Disabledc

c. Click OK.

 Appendix B. Installing the sample application test environment 629

4. Verify the SecureDiameterChain is properly configured.

a. Click View associated transports on the DiameterNamedEndPoint row.

b. Verify SecureDiameterChain appears in the list with the following values.

i. Enabled: Enabled

ii. Host: * or host_name Port: 3868

iii. SSL Enabled: Enabled

c. Click OK.

Figure B-50 Diameter Channels

5. Verify the DiameterChain channel is properly configured.

a. Click DiameterChain.

b. Verify the following information is correct in the Transport Channels
section.

i. TCP inbound channel: DiameterTCPInboundChannel

ii. Host: * or <server_name>

iii. Port: 3868

iv. Thread pool: DiameterThreadPool

v. Generic inbound channel: DiameterGenericInboundChannel

c. Click Generic inbound channel (DiameterGenericInboundChannel).

d. Verify the following values are correct.

i. Transport Channel Name: DiameterGenericInboundChannel

630 Developing SIP and IP Multimedia Subsystem (IMS) Applications

ii. Discrimination weight: 1

iii. JAR file: com.ibm.ws.diameter_6.1.0.jar

iv. Channel type identifier: DiameterInboundChannel

v. Configuration URI: this field should be empty

e. Click OK on the DiameterChain panel.

f. Click OK to return to the Transport chain panel.

Figure B-51 Diameter Generic inbound channel

6. Verify the SecureDiameterChain channel is properly configured.

a. Click SecureDiameterChain.

b. Verify the following information is correct in the Transport Channels
section.

i. TCP inbound channel: DiameterTCPInboundChannel

ii. Host: * or <server_name>

iii. Port: 3868

 Appendix B. Installing the sample application test environment 631

iv. Thread pool: DiameterThreadPool

v. SSL inbound channel: DiameterSSLInboundChannel

vi. SSL Configuration: Diameter

vii. Generic inbound channel: DiameterGenericInboundChanne

Figure B-52 Diameter Secure Chain Channel

c. Click Generic inbound channel (DiameterGenericInboundChannel).

d. Verify the following values are correct.

i. Transport Channel Name: SecureDiameterGenericInboundChannel

ii. Discrimination weight: 10|

iii. JAR file: com.ibm.ws.diameter_6.1.0.jar

iv. Channel type identifier: DiameterInboundChannel Configuration URI
should be empty

v. Click OK on the SecureDiameterChain panel.

e. Click OK to return to the Transport chain panel.

7. Verify the SSL configuration object has been created and configured properly.

632 Developing SIP and IP Multimedia Subsystem (IMS) Applications

a. In the navigation panel, click Security → SSL security and key
management → SSL configurations.

b. Click Diameter in the list of SSL configurations.

c. Under Additional Properties, click Quality of protection (QoP) settings.

d. Verify the following values are correct.

i. Client authentication: Required

ii. Protocol: SSL_TLSe.

e. Click OK.

Install Rf accounting Web Service
The Rf accounting Web Services is a messaging interface to enable an
application to send accounting messages to a Charging Collection Function
(CCF)

1. Copy Diameter_Rf.properties to the was_root/lib/ directory.

2. Open Diameter_Rf.properties in a text editor.

3. Find the OriginHostName property.

Enter the matching host name of the application server where the
WebSphere Diameter Enabler base is installed.

4. Find the OriginRealmName property.

Enter the matching realm name of the application server where the
WebSphere Diameter Enabler base is installed.

5. Find the HostIpAddress property.

Enter the IP address where the WebSphere Diameter Enabler base is
installed.

6. Find the ProxySupport property.

Enter false to turn off proxy support.

7. A connection with a remote peer needs to be defined. For the purpose of the
sample application the remote peer is the CCF simulator. To configure a
connection with a remote peer do the following:

a. Find the con1.remotePeerOriginHostName property.

Enter the matching host name where the CCF simulator is or will be
installed. It can be OriginHostName.

Note: The CCF is simulated in this sample application scenario

 Appendix B. Installing the sample application test environment 633

b. Find the con1.remotePeerIPAddress property.

Enter the IP address of the host name where the CCF simulator is or will
be installed.

c. Find the con1.remotePeerPort property.

Type the port number that is used by the CCF simulator for receiving the
Diameter packets. This port number must correspond to the port number
that will be configured in the CCF simulator to listen for incoming Diameter
packets.

d. Keep the other parameters unchanged.

Figure B-53 Diameter Rf Web Service configuration

B.7.4 Deploy Diameter Rf Web Services
1. Log in to the Integrated Solutions Console.

2. In the navigation panel, click Applications → Install new Application.

3. Click Browse to locate the DHADiameterRfWebServiceEAR.ear file on your
system.

634 Developing SIP and IP Multimedia Subsystem (IMS) Applications

4. Click Next → Next → Next → Finish.

5. Click Save to save the master configuration.

Start the application server
1. In the navigation panel, click Applications → Enterprise Applications.

2. Select DHADiameterRfWebServiceEAR.

3. Click Start.

4. The DHADiameterRfWebServiceEAR application should be started successfully.

5. Check SystemOut log file to for any errors.

Figure B-54 DHADiameterRfWebServiceEAR application start

 Appendix B. Installing the sample application test environment 635

636 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Appendix C. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG247255

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG247255.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description

C

© Copyright IBM Corp. 2007. All rights reserved. 637

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

7255code.zip Zip file containing code samples and the SipXPhone
softphone.

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 40 GB Disk
Operating System: Windows or Linux
Processor: Minimum 1GHz
Memory: Minimum 1 GB

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

Description of sample code
Table 13-3 describes the contents of the 7255code.zip file after unzipping.

Table 13-3 Contents of 7255code.zip

Item Description

SIP Sample applications Code for the Registrar and proxy, and Third Party
Call Control SIP applications from chapters 9 and
10.

IMS Sample applications,
FindHelp_RSAspec_062306.zip

Code for the FindHelp IMS application from
chapters 11, 12 and 13.

sipXphone-2_6_0_27.exe sipXphone softphone executable file

638 Developing SIP and IP Multimedia Subsystem (IMS) Applications

acronyms
3GPP Third Generation Partnership
Project

3GPP2 Third Generation Partnership
Project 2

3PCC Third Party Call Control

AAA Authentication, Authorization
and Accounting

AIN Advanced Intelligent Network

AIP Application Infrastructure
Provider

ARIB Association of Radio
Industries and Businesses

AS Application Server

ATIS Alliance for
Telecommunications
Industry Solutions

AUID Application Unique ID

B2BUA Back-To-Back User Agent

BGCF Breakout gateway Controller
Functions

BPEL Business Process Execution
Language

CAMEL Customized Applications for
Mobile Networks Enhanced
Logic

CBE Common Base Event

CCF Charging Collection Function

CCSA China Communications.
Standards Association

CDR Call Detail Record

CEI Common Event Infrastructure

CPE Customer Premise Equipment

CS Circuit switched

CSCF Call Session Control Function

CSCF Call Session Control Function

Abbreviations and

© Copyright IBM Corp. 2007. All rights reserved.
Cx Reference Point Diameter based interface to
HSS

DB2 IBM universal Data Base 2

DMZ DeMilitarized Zone

EAR Enterprise ARchive

EJB Enterprise JavaBean

ESB Enterprise Service Bus

ETSI European Telecommunication
Standards Institute

ETSI European
Telecommunications
Standards Institute

ETSI European
Telecommunications
Standards Institute

FMC Fixed Mobile Convergence

GLMS Group List Management
Server

GLS Group List Server

GUP 3GPP Generic User Profile

HSS Home Subscriber Server

HTTP Hypertext Transfer Protocol

IBM International Business
Machines Corporation

ICMP Internet Control Management
Protocol

I-CSCF Interrogating Call Session
Control Function

IDE Integrated Development
Environment

IMS IP Multimedia Subsystem

IMS IP Multimedia Subsystem

IMS GWF IMS Gateway Function

IM-SSF IP Multimedia Service
Switching Function

 639

IMT-2000 International Mobile
Telecommunications-2000

IPSEC Internet Protocol Security

IPTV Internet Protocol Television or
Interactive Programming
Television

ISC IMS Service Control

ISG Intelligent Services Gateway

ITSO International Technical
Support Organization

ITU International
Telecommunications Union

IVR Interactive Voice Response

J2EE Java 2 Platform, Enterprise
Edition

JAAS Java Authentication and
Authorization Service

JAIN Java Advanced Intelligent
Network

JMS Java Message Service

JMX Java Management
eXtensions

JVM™ Java Virtual Machine

LDAP Lightweight Directory Access
Protocol

LNP Local Number Portability

MDS Messaging and Data Services

MGCF Media Gateway Control
Function

MGW Media Gateway

MRF Media Resource Function

MRFC Multimedia Resource
Function Controller

MRFP Media Resource Function
Processor

MVNE Mobile Virtual Network
Enabler

MVNO Mobile Virtual Network
Operator

NAS Network Access Server

NGN Next Generation Network

NGN Next Generation Network

NGOSS Next Generation Operational
Support System

NLS Natural Language Support

OCF Online Charging Function

OCS Online Charging System

OSA Open Services Architecture

OSA-SCS Open Service Access -
Service Capability Server

OSS/BSS Operational Support
Systems/Business Support
Systems

P-CSCF Proxy Call Session Control
Function

PS Presence Server

PSTN Public Switched Telephone
Network

PSTN Public Switched Telephone
Network

PTT Push to Talk

QoS Quality of Service

Quad Play Integrated voice, video, data
and mobility offering

RADIUS Remote Authentication Dial In
User Service

RAF Repository Access Function

RTCP Real-time Transport
Control Protocol

RTP Real-time Transport
Protocol

SAR SIP Application Resource

SCE Service Creation Environment

SCF Session Control Function

SCIM Service Capability Interaction
Manager

SCIP Simple Conference Invitation
Protocol

640 Developing SIP and IP Multimedia Subsystem (IMS) Applications

S-CSCF Serving Call Session Control
Function

S-CSCF Serving Call Session Control
Function

SCTP Session Control Transmission
Protocol

SDK Software Development Kit

SDO Service Data Object

SDP Session Description Protocol,
or, Service Delivery Platform

SGW Signaling GateWay

SID Shared Information & Data

SIMPLE SIP for Instant Messaging &
Presence Leveraging
Extensions

SIP Session Initiation Protocol

SIP AS Session Initiation Protocol
Application Server

SIPPING Session Initiation Protocol
Project INvestiGation

SIPS Secure SIP

SLEE Service Logic Execution
Environment

SLF Subscription Locator Function

SMTP Simple Mail Transmission
Protocol

SNMP Simple Network Management
Protocol

SOA Service-oriented architecture

SOAP Simple Object Access
Protocol

SPI Service Provider Interface

SSL Secure Sockets Layer

SWG SoftWare Group

TCAP Transmission Capabilities
Application Protocol

TCP Transmission Control Protocol

TDM Time Division Multiplexing

TIA Telecommunications
Industry Association

TISPAN Telecoms & Internet
converged Services &
Protocols for Advanced
Networks

Triple Play Integrated Voice, Video &
Data Offering

TTA Telecommunications
Technology Association

TTC Telecommunication
Technology Committee

TTS Text-to-Speech

TUI Telephony User Interface

UA User Agent

UDP User Datagram Protocol

UMTS Universal Mobile
Telecommunications
System

VoD Video on Demand

VoIP Voice over IP

VPN Virtual Private Network

VXML Voice Extensible Markup
Language

WAR Web ARchive

WAS WebSphere Application
Server

WID WebSphere Integration
Developer

WiMAX Worldwide Interoperability for
Microwave Access

WSDL Web Services Description
Language

XCAP XML Configuration Access
Protocol

XCAP XML Configuration Access
Protocol

XML eXtensible Markup Language

 Abbreviations and acronyms 641

642 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 645. Note that some of the documents referenced here may be available
in softcopy only.

� Technical Overview of WebSphere Process Server and WebSphere
Integration Developer, REDP-4041

http://www.redbooks.ibm.com/abstracts/redp4041.html?Open

� Patterns: Building Serial and Parallel Processes for IBM WebSphere Process
Server V6, SG24-7205

http://www.redbooks.ibm.com/abstracts/sg247205.html?Open

� WebSphere Application Server V6.1: Technical Overview, REDP-4191

http://www.redbooks.ibm.com/abstracts/redp4191.html?Open

� WebSphere Application Server V6.1: System Management and
Configuration, SG24-7304

http://www.redbooks.ibm.com/abstracts/sg247304.html?Open

� Rational Application Developer V6 Programming Guide, SG24-6449

http://www.redbooks.ibm.com/abstracts/sg246449.html?Open

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

http://www.redbooks.ibm.com/abstracts/sg246303.html

� Patterns: Model-Driven Development Using IBM Rational Software Architect,
SG24-7105

http://www.redbooks.ibm.com/abstracts/sg247105.html

� Getting Started with WebSphere Enterprise Service Bus V6, SG24-7212

http://www.redbooks.ibm.com/abstracts/sg247212.html?Open

� Enabling SOA Using WebSphere Messaging, SG24-7163

http://www.redbooks.ibm.com/abstracts/sg247163.html

© Copyright IBM Corp. 2007. All rights reserved. 643

http://www.redbooks.ibm.com/abstracts/redp4041.html?Open
http://www.redbooks.ibm.com/abstracts/sg247205.html?Open
http://www.redbooks.ibm.com/abstracts/redp4191.html?Open
http://www.redbooks.ibm.com/abstracts/sg247304.html?Open
http://www.redbooks.ibm.com/abstracts/sg246449.html?Open
http://www.redbooks.ibm.com/abstracts/sg246303.html
http://www.redbooks.ibm.com/abstracts/sg247105.html
http://www.redbooks.ibm.com/abstracts/sg247212.html?Open
http://www.redbooks.ibm.com/abstracts/sg247163.html

Other publications
These publications are also relevant as further information sources:

� SIP: Understanding the Session Initiation Protocol, by Alan B. Johnston.
Artech House Publishers; Second edition (November 2003), ISBN-10:
1580536557

� The 3G IP Multimedia Subsystem (IMS): Merging the Internet and the Cellular
Worlds, by Gonzalo Camarillo and Miguel A.García-Martín. Wiley; Second
edition (February 2006), ISBN-10: 0470018186

Online resources
These Web sites and URLs are also relevant as further information sources:

� Business Process Execution Language for Web Services Version 1.1

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

� Service Component Architecture

http://www-128.ibm.com/developerworks/webservices/library/specificat
ion/ws-sca/

� Service Data Objects

http://www-128.ibm.com/developerworks/webservices/library/specificat
ion/ws-sdo/

� IBM WebSphere Developer Technical Journal: Session Initiation Protocol in
WebSphere Application Server V6.1 - Part 1

http://www-128.ibm.com/developerworks/websphere/techjournal/0606_bur
ckart/0606_burckart.html

� IBM WebSphere Developer Technical Journal: Session Initiation Protocol in
WebSphere Application Server V6.1 - Part 2

http://www-128.ibm.com/developerworks/websphere/techjournal/0608_bur
ckart/0608_burckart.html

� Tuning IBM WebSphere Telecom Web Services Server

http://www-1.ibm.com/support/docview.wss?uid=swg27008225&aid=1

� Service-oriented modeling and architecture

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-des
ign1/

� Elements of Service-Oriented Analysis and Design

http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/

644 Developing SIP and IP Multimedia Subsystem (IMS) Applications

http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www-1.ibm.com/support/docview.wss?uid=swg27008225&aid=1
http://www-128.ibm.com/developerworks/websphere/techjournal/0608_burckart/0608_burckart.html
http://www-128.ibm.com/developerworks/websphere/techjournal/0606_burckart/0606_burckart.html
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-sdo/
http://www-128.ibm.com/developerworks/webservices/library/specification/ws-sca/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

� Building SOA applications with reusable assets: Reusable assets, recipes,
and patterns

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-reu
se1/

� Reusable Asset Specification Repository for Workgroups

http://www.alphaworks.ibm.com/tech/rasr4w

� UML basics: An introduction to the Unified Modeling Language

http://www-128.ibm.com/developerworks/rational/library/769.html

� Rational UML Profile for business modeling

http://www-128.ibm.com/developerworks/rational/library/5167.html

� Introducing IBM Rational Software Architect

http://www-128.ibm.com/developerworks/rational/library/05/524_rsa/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 645

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-128.ibm.com/developerworks/rational/library/05/524_rsa/
http://www-128.ibm.com/developerworks/rational/library/5167.html
http://www-128.ibm.com/developerworks/rational/library/769.html
http://www.alphaworks.ibm.com/tech/rasr4w
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-reuse1/

646 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Index

Numerics
3G 28–29
3GPP 28–29, 31, 34–36, 160, 173–174, 177, 303
3GPP2 28, 174–175
3rd Generation Partnership Project 28, 173

See also 3GPP
3rd Generation Partnership Project 2 28, 173

See also 3GPP2

A
AAA 35–36, 178

See also Authentication, Authorization, and Ac-
counting

ACK 11–15, 18–19, 24, 209, 217, 224, 275, 296,
325, 474, 476
AddressesBO 338, 364–368, 371, 428

xsd 428
AddressOfRecord 243–245
Admission Control 199, 584–585
AdmissionControlInterface 584
Alliance for Telecommunications Industry Solutions
28
A-Party 314, 316, 319, 323–325, 337
APIs 20, 59, 83, 86, 117, 170

See also Application programming interfaces
AppConfigHTTP 83–84
Application

business logic 200
code 238
components 131, 229
composition 208, 221, 229–230, 234, 257
deployment 64, 450
development 54, 63–65, 120, 499, 503
development environment 63–64, 120, 499
development tool 64
environment 53
features 5
functions 67
installation 449, 570, 572–573, 575, 577–578,
580
instances 25
integration 486
interoperability 20

© Copyright IBM Corp. 2007. All rights reserved.
platforms 160
portability 165, 167
profile 541
status 607
support 167
types 50
usage 190

Application programming interfaces 20, 181
See also APIs

Application Server 20, 31–34, 36–37, 39, 58–59,
100, 174, 176–177, 181, 231, 568–569, 629

instance 280, 600
node 448, 458, 481–482, 484, 486
profile 495, 536, 601, 617, 625, 629

Application Server Toolkit 50–51, 53, 55, 63–64,
89, 166, 233–234, 236, 258, 293, 319, 342–343,
455, 500–501, 582

Develop using 258
enhancements 166
install 236, 500
installation wizard 500
See also AST

AppServer 481–482, 484, 495–496, 525, 534, 545,
554
appSession 214, 225, 228, 263–264, 269, 274–278

getAttribute 228, 263–264, 269
setAttribute 274, 277–278

ArrayList 352, 357–359
availableGroupMembers 359

ArrayOf 379, 382
Association of Radio Industries and Businesses 28
AST 53–54, 63–66, 69, 72, 82–83, 88–90, 98, 100,
105, 166, 234, 236, 239, 247, 256, 258, 289, 343,
352, 455, 500, 502, 508–509, 513–514

Install 500
See also Application Server Toolkit
Starting 502

AUIDs 192
Authentication

alias 561–563, 565, 575, 594, 596, 618–619
create 561–562, 594, 618

challenge 226
Component-managed 565, 596, 619
configuration 282

 647

type 226
Authentication, Authorization, and Accounting 35

See also AAA
Authorization

API 59, 100
applications 622
constraints 79, 226
Service 562, 594, 618

B
B2BUA 8, 33, 37, 59, 101, 175

See also Back-to-Back User Agent
Back-to-Back User Agent 8, 37, 59, 175

See also B2BUA
BGCF 33–34

See also Breakout Gateway Controller Func-
tions

BPEL
Engine 304, 440
flow 128, 307–309, 450–451, 477, 479,
483–484
MyService 131
process 57, 123–124, 131–133, 309, 319–320,
324–325, 328, 336–337, 341–342, 348, 361,
368, 393, 418, 430, 435, 440
runtime environment 142
See also Business Process Execution Language
Web service 358

Breakout Gateway Controller Functions 33
See also BGCF

Business
applications 200
integration 120, 122–123, 126–128, 135, 142,
361, 363–364, 366, 383, 387, 390, 417,
431–432, 450–451, 477

modules 123
perspective 126–127, 363–364, 431–432,
450, 477

logic 127, 176, 200, 229, 238, 242, 244, 246,
262, 270, 342, 361, 383, 390
objects 121, 128, 133, 200, 364, 371
processes 52, 60, 120, 122, 134–135
rules 120–121, 124, 132, 201

Business Process Execution Language
See also BPEL

BYE 11–12, 19, 24, 208–209, 272–276, 278, 296,
325, 334, 360, 474–475, 477

message example 334

Request 19, 272–273, 275, 360

C
Call Control

Servlet 276
SipServlet 270

create 270
Call Controller 215, 275–277
call flow 7, 17–19, 102, 328–329
Call Forwarding 9, 83, 85–87
Call Session Control Function 36, 38, 59

See also CSCF
CallControl 227, 259–263, 265, 268, 271–273, 287

EAR 279
SIP Servlet 259, 261–263, 273
SipServlet 272

create 272
CallController 215, 221, 264, 274, 277, 289–290,
293

doSuccessResponse 274
servlet 221, 277
thirdPCC 264

CallControlStatusRPC 268
create 268

Call-ID 11, 16, 211, 216, 231, 244, 296, 330–331,
334, 470, 475–477
CAMEL 34, 37

Application part 37
CANCEL 8, 11–12, 24, 208–209, 215, 217, 264,
296
CCF 179, 181, 322, 325, 441, 445, 465–466, 486,
633–634

See also Charging Collection Function
Simulator 322, 325, 445, 465–466, 486,
633–634

CDATA 470, 475–477
CDMA2000 28
CEI 135–136, 149, 200

See also Common Event Infrastructure
CEI event emitter mediation primitive 149
Charging

event 319, 390, 392, 411–413, 416, 486
create 390, 392, 411–413, 416

services 361, 373
Charging Collection Function 181–182, 322, 465,
633

See also CCF
China Communications. Standards Association 28

648 Developing SIP and IP Multimedia Subsystem (IMS) Applications

ClickToCall 260, 266, 268
Servlet 260

create 260
Collaborations 318–322
command line interface 187, 446–447, 586,
609–611
Common Components 198
Common Event Infrastructure 135, 200

See also CEI
Common Open Policy Service 35
composite applications 49, 55, 57
Composite services 57–58, 61, 122, 301–303, 305

architecture 302
choreography 303
designing 305
IMS 302
orchestration 305

conferencing services 305
Configure

authentication 282
DB2 540, 546, 586, 589, 611–612
Service Integration Bus 554

Content
ID 331–332
Length 297, 330–331, 334, 470, 475–477
Type 297, 330–332, 334, 470, 475, 610–611

contentBody 355, 481
contentType 355, 358
Control plane 36–38, 160, 165, 174, 177
Converged

application 51, 72, 209, 227, 234, 256–257,
277, 294
container 51, 126, 169, 316
HTTP 72, 162, 167, 170, 440
Project 67, 69–71, 258, 342–343
services 29, 39, 162
servlet 167, 209, 227, 268
SIP 49, 65–66, 69, 71, 163, 169, 233, 258, 280,
307
SIP/HTTP 65, 69, 71–72, 162–163, 170, 233,
440

ConvergedServlet 227–228, 260–261, 268–269
example 227

COPS 35
createRequest 213–215, 275–276, 278, 356, 360
CSCF 32–34, 36, 59, 101, 164, 174–177, 197, 302,
305, 323, 474, 622

Interrogating 32
Proxy 32

See also Call Session Control Function
Serving 32, 34, 175

CSeq 11, 16, 211, 231, 244, 296, 330–331, 334,
470, 475–477
Cx 34

D
Data

objects 121, 200
source 60, 156, 563, 565–567, 569, 594–598,
618–620
source class 597, 619
type 338–340, 364, 371–373, 393, 398, 400,
404, 407, 409–410, 412, 414
Type Selection 371–372, 398
types 128, 182, 364, 378–382

Database
configuration 547–554
name 547, 565, 589, 596, 612, 614, 619
Remote Server 547
server 547, 589, 612–613

connection port 547, 589, 612
type 563, 570, 572–573, 575, 577, 579–580,
595, 618

DB2 182, 185, 540–541, 546–547, 561–565,
570–577, 579–580, 586, 589–591, 595–596,
598–599, 611–615, 618–619, 621, 624

See also DB2 server
DB2 server 590, 613

See also DB2
Decision tables 134–135, 201
Deployment

descriptor 65–66, 68–69, 71–73, 75–76, 78,
80–81, 166, 207, 209, 214–215, 218–219, 221,
223–226, 228, 231, 238, 240–241, 247–249,
260, 266–268, 272, 277, 346–347, 349–350,
353, 456–457, 482
descriptor information 68, 72

deployment descriptor 68, 277
DHADiameterRfTestClient.java 112
DHADiameterRfWebService

EAR 381, 634–635
WAR 381

Diameter
client samples 110
Enabler 180–181, 340, 380–381, 625–627, 633
messaging interface 58, 100
Offline charging 321, 373, 380–381

 Index 649

Resources 58, 90
Rf 97, 101, 110–112, 321, 426, 440, 445, 486,
496, 634
Rf Service 426
RF test client 110–112
Rf Web Service 321, 486, 634
Servers 179
Sh test client 110, 118
Traffic port 444

Diameter Rf Web Services
deploy 634

DiameterGenericInboundChannel 630, 632
DiameterRfImport 426, 454

component 426
componnet 426
properties 454

DiameterRfPartner 390, 414, 427
DiameterRfService 98–99, 110, 319, 321, 325,
340, 381, 383, 390, 414, 426–427

component 321, 325
wsdl 98–99, 110, 381, 383, 427

DiameterShNotifyService 98
wsdl 98

DiameterShService 98, 110
wsdl 98, 110

Document Selector 190–191
doRequest 23, 25, 107, 210, 217
DOS command window 471–472, 485
Dx 34
Dynamic Web Projects 265–266

E
EAR 66, 84, 280, 283, 379, 381, 448, 453, 545,
570–578, 580–581, 583–586, 604–605, 621, 634
Eclipse Integrated Development Environment 45
Eclipse Modeling Framework 46
Editor

business object mapping 135–136
business process 130, 135–136, 386–387, 390,
393–396, 425
business rule group 136
business rule set 135
business state machine 135–136
decision table 135
human task 136
interface mapping 136
mediation flow 135, 147, 150, 153–154
selector 136

visual snippet 129, 135, 393, 403
EJB 54, 65, 82, 569, 571–572, 574–575, 577,
579–580

See also Enterprise JavaBeans
Enablement Toolkit 50–51, 55, 58, 89–90, 97, 100,
110, 508–509, 513
Enablers 39, 55–57, 61, 125, 131–132, 162–165,
182, 302–304, 313, 338, 361
Enterprise JavaBeans 54, 65

See also EJB
Enterprise Service Bus 52, 60–61, 120, 122, 142,
147–148, 165, 170, 194, 199–201, 304–305, 310,
312, 518, 527–528

See also ESB
ESB 146, 150–151, 153, 193–194, 199–200, 304,
312, 524, 527, 529, 545, 548–550

See also Enterprise Service Bus
Establish Call 390, 392, 407–408, 411
Ethereal 53, 482, 484–485, 488–489, 491
European Telecommunications Standards Insti-
tute 28–29
Event

charging 319, 340, 390, 392, 411–413, 416,
486
list 330–331, 356
monitor 135

exceptions 75, 130, 309
execution

environments 52, 159, 161
Exports 122, 336

F
Faults and Alarms 199
FindHelp

application 312, 314–316, 322, 344, 360–361,
460, 474
BPEL 324–325, 337, 440, 450–451, 479,
483–484
BPEL flow 450–451, 479, 483–484
BPEL process 324–325, 337, 440
caller requests script 478
component 326–328, 418, 420, 422–427, 433
interface 364
module 338, 363–364, 376, 378, 380–381,
416–417, 430, 432
process 338–339, 390, 427
process component 427
sample IMS application 361, 439–440, 466

650 Developing SIP and IP Multimedia Subsystem (IMS) Applications

sample service 313, 450
SAR 361, 455, 457–458
service 313, 316, 318, 323–325, 337, 341–344,
427, 440, 447, 466–467, 473–474, 480
service administrator 467
SIP Servlet 336, 352, 430, 440, 444, 455,
458–459, 478, 481–484, 496
WSDL files 427, 430
XML 474, 478, 485

FindHelpBP 383, 386–387, 390, 419
FindHelpBpelProcess 319, 321–322

component 319
FindHelpDialog 318–319

component 318
FindHelpInterface 333, 338, 369, 373, 384, 418,
421, 425, 428

WDSL 428
FindHelpInterfaceHttp 428
FindHelpInterfaceProxy 336, 353, 358–359

BPEL 359
object 358

FindHelpSipServlet 319–320
component 319

Flows
BPEL 307, 442
call 53
mediation 60, 120, 134–135, 142, 147,
150–151, 154, 157, 194, 524, 527, 529
process 146

formats 29, 182, 190
foundation services 49, 56–57, 125, 133, 302, 305

multiple 302
orchestrate 49

framework 23, 25, 35, 46, 126, 172, 229, 231, 302,
432
fromSipURI 263–265, 277
Functional Components 30–31, 33, 36
Functional planes 36–37, 160

G
Gateway Control Protocol 35

See also GCP
Gateways 31, 33, 36, 38, 56, 197
GB 88, 143, 442–443
GCP 35

See also Gateway Control Protocol
Generated Callcontrol Servlet 262
generateInfo 357–360, 484

getAddressHeader 211, 243
getAttribute 213, 222, 227–228, 263–265, 269,
274–277, 356, 358, 360
getCallInformationResponse 380
getCanonicalName 358
getLocationForGroup 436
getServletContext 213, 227–228, 264, 277, 354
getURI 218, 244–245, 247, 274, 358
getUserFromAddress 274, 276
GLMAdmin 467, 607–608
GLMConfigurator 604, 606
GLMGroupACLsCache 602
GLMGroupCache 602
Global failure 14, 216
GLS

application 601, 603, 606, 608
application server 601
deploy application 586
See also Group List Server
Self Care portlet 609
Server 446–448, 604

GLSUsers 593, 605
Gm 34
Group

mappings 605
name 354, 467, 593
Resolution 149
URIs 149

Group List Management
Self Care 607–610
Server 189, 324, 447
Service Enabler 187, 189

Group List Server
See also GLS
Self Care 606

Group Resolution 149
Group Resolution mediation primitive 149
GroupListMgr 604–606
GroupListServer 587, 590

directory 587
groupName 355
groups

link 571–572, 576–577, 579–580
GSM 28

H
H.248 35
headers 5, 10, 176–177, 183, 210–211, 213, 216,

 Index 651

355
Home Subscriber Server 32, 36, 59, 181–182

See also HSS
host

name 192–193, 347, 446, 448, 457, 466, 478,
541, 545, 547–553, 555, 589, 608, 612
qualified name 548–553
service logic 160

HSS 32–34, 36, 59, 164, 179–182
See also Home Subscriber Server

HTTP
applications 65, 69, 72
component 168
container 167, 169, 307
converged applications 51
interface 227
message headers 5
messages 320, 482
proxies 172
requests 209
response 207–208
See also Hypertext Transfer Protocol
server 5
services 5
Servlet container 208
Servlet filters 208
Servlets 23–24, 49, 51, 66, 70–71, 167, 169,
207–208, 343, 353
Traffic port 444
user interface 222

HttpServlet 207–208, 227–228
HttpServletRequest 23, 207–208, 227–228, 263,
269
HttpServletResponse 23, 207–208, 227, 263, 269

classes 23
object 207

HttpSession 208, 223, 263, 268–269
Human task 120–124, 132, 135–136, 201, 309, 311
Hypertext Transfer Protocol 5, 69

See also HTTP

I
IBM

Installation factory 166
IP Multimedia Subsystem 161, 541
IP Multimedia Subsystem components 541
Rational Software Development Platform 141
Telecom Web Services Toolkit 50–51, 57, 60,

119
Tivoli Directory Server 185, 586, 591
Unified Service Creation Environment 45, 161
WebSphere Group List Server 56, 182,
185–187, 316, 320, 440, 586, 593
WebSphere Integration Developer 57, 59–60,
119–120, 141, 145, 430, 516, 522
WebSphere Presence Server 56, 61, 164, 182,
320, 440, 443, 611, 621

IBMApplicationSession 269
I-CSCF 32, 34
IETF 4, 26, 35, 58, 170–171, 173–174, 178,
182–183, 189–190, 331–332, 446–447, 470
implementation

component 133
integrated 167
overview 342

import
component 125–126, 424, 433
FindHelp 353, 451
icon 423, 425–426
interfaces 338
Location 373
SAR file 456
Third Party Call Control 379
Web Services 124
wizards 71

IMS 49, 55, 57
Application Server 58–59, 100, 176, 181
applications 43, 49–51, 55, 58, 120, 130, 133,
173
architecture 30, 33, 35–36, 38, 44, 51, 178,
182, 302
components 36, 49, 179, 196, 440–441
composite service architecture 302
composite services 302
control plane 174, 177
designing services 301
developing foundation applications 90
Enablement Toolkit 50–51, 55, 58, 89–90, 97,
100, 110, 508–509, 513
enablement toolkit 55, 89
enablers 55–56, 131–132, 313
foundation applications 49, 51, 89–90, 97, 101
foundation services 56
integrated services environment 38
network 32–33, 36, 160
resource importation 93–94
resources 90, 93–97, 180

652 Developing SIP and IP Multimedia Subsystem (IMS) Applications

sample application scenarios 502
sample applications 53, 499, 507, 522
sample applications development 507
sample service 341
service architecture 130, 312
service components 130
service composition 303
service composition architecture 303
service creation

service creation 39, 43, 51, 57
service creation environment 51, 57
Service delivery environment 161
service execution environment 61, 164
service plane 174, 176, 312
service plane architecture 312
service plane solutions 312
services 30, 34, 38–40, 160, 163, 165, 301, 311
services architecture 38–40
services plane 165
solution 159–160, 163, 165, 301, 305
solutions 165, 182
standards-compliant SIP application 56, 173
Third Party Call 379, 582–586
Third Party Call EAR 379, 583–584, 586
WTP Tools 511, 514–515

IMS Service Control 49, 58, 101, 164, 174, 178
See also ISC

IMSServices 548, 552–553
binaries 552

IM-SSF 37
IncomingMessageEvent 296
IncomingSipServletResponse 294
INFO 12, 22, 24, 101, 126, 170–171, 177, 210, 225,
243–246, 263, 270, 274–278, 294, 296, 324–325,
334, 354–360, 474, 476, 484, 487, 491
information

callers 209
module 369
summary 502, 571, 573–574, 576, 578–579,
581

Init
method 263, 277, 353
Process 390–391, 393

initial requests 213, 227
initialization 72, 347–348
install

base binaries 544, 586–587, 611, 626
directory 525, 532
image 141, 532

new application 250
WebSphere Application Server 532

installation
directory 252, 516–517, 523, 525–526, 529,
535, 545–546
folder name 514
options 250, 449, 459, 519, 570, 572–573, 575,
577–580
options page 570, 572, 575, 577, 579–580
processes 532, 540, 544, 586, 611, 626
steps 540, 570
wizard 500, 507, 524, 527, 532–533, 545–546

integrated
applications 59, 120
building applications 59
custom services 146
services 38, 120, 146

Integrated Services Environment 38
integration

debugger 134–135
service module 432

interface
editor 370, 373
Export 123
icon 418, 421, 423, 426, 452–454
imported 141
map 124
Name 369
names 390
selection 384–385, 388
support 124

interfaces
Internet Protocol 4
Interworking 29–30, 34
INVITE 4, 8, 11–12, 14–15, 18, 21, 24, 83, 86, 109,
176, 208–209, 214–215, 220–221, 231, 234,
245–246, 264, 274–276, 296, 323, 325, 329–330,
332, 336, 349, 354, 357, 474–475, 484–485
Invocation

service method 207
invokeBPEL 358–359, 482, 484
invokeCallBack interface 371–372
invokeCallBackResponse 333
IOException 210, 217, 227, 242–243, 246, 263,
269, 274–276, 278, 355–357, 360
IP multimedia sessions 29
IP Multimedia Subsystem 20, 27–28, 61, 161,
174–175, 178, 180, 440, 443, 541

See also IMS

 Index 653

IP telephony 4
ISC 34, 49, 58–59, 83, 101–105, 162, 164,
174–178, 440

interface 101, 174–177
See also IMS Service Control
SIP servlet sample 101–102

ISCDemo 101, 107–108
ISCDemoApp 105, 107–109
ISCDemoAppHandler 108–110

J
J2EE 49, 54–55, 59, 65–66, 124, 126, 165, 229,
238, 279–280, 294, 316

See also Java 2 Platform, Enterprise Edition
J2EE applications

deploy 66
J2EE Connector Architecture 59
J2ME 20
JAIN 20–23

SIP 20–23
SIP API 20–23

Java 2 Platform, Enterprise Edition 54–55
See also J2EE

Java Build path 97, 113–115, 118
Java Community Process 20, 22–23, 215

See also JCP
Java component 124
Java Message Service 52, 60, 201, 554
Java snippets 135
JavaServer Pages 123
JCP 20, 170, 215

See also Java Community Process
JDBC 182, 540, 561, 563–565, 569, 571–572,
574–575, 577, 579–580, 586, 594–596, 618–619,
624–625
JMS 52, 60, 126, 167, 201, 554, 557–561, 570,
576, 616–617
JNDI

name 558–559, 561, 565, 569, 571–572,
574–575, 577, 579, 596, 602–603, 616–617,
619
name field 558–559, 561, 565, 596, 616–617,
619

JSP 228, 264–268, 571
JSR 23, 55, 64–66, 163, 165–167, 170
Jython development tools 64

K
key concepts 119–120

L
languages 54, 124
latency 169, 230, 311
latitude 321, 337, 339, 404, 435–436, 450
level services 55, 57

compose foundation 55
Level.INFO 243–246, 263, 270, 274–278
libraries 55, 58–59, 90, 96–98, 112–117, 130
Linux

Red Hat Enterprise 3.0 88, 143
server 442
SuSE Enterprise Server 9 143
test server 440, 442, 447–449, 452–455,
457–458, 471–472, 478, 481–484, 486, 493,
495–496
test server logfiles 496

List
drop-down 558, 563, 565, 576, 595–596, 616,
618–619
resource 183, 192, 467

Listener 20, 75, 80–82, 223–226, 575
class 225–226
example 225

ListeningPoint 21–22
ListIterator 211
localhost

server 290, 294
localHostIpAddress 465–466
localHostname 354, 465–466
localPortNumber 354
localProcessServer 354
LocalProxy 217, 234–235, 238, 245–246, 255, 342

servlet 234, 246
SIP Servlets 235

location
current 234, 304, 321, 324, 337, 436

location server
class diagram 436
configuration 374–375
set 448
set up 448
simulated 441, 448, 483, 496

location service
WSDL file 373

location simulator 321, 341–342, 399, 435–436

654 Developing SIP and IP Multimedia Subsystem (IMS) Applications

LocationServer 377
EAR 374, 376, 448, 452

LocationServicePartner 388, 399, 404, 425
LockOutServices 313, 323–324

group 313
log

file 481–482, 484, 493–496
log.info 354–360
Logger

getLogger 243–244, 246, 263, 269, 354
log 243–246, 263, 270, 274–278

logic
custom 128
developing application 226

low latency applications 311

M
Ma (interface) 34
makeCall 153, 337, 339, 380, 407–411, 415, 480,
582, 585

activity 410
MakeCallServiceException 410
management

domain 160
enabler 184–185, 188–189, 191

Mandatory mediation primitives 148
Policy/Subscription 148, 195
Service invocation 148, 195
Transaction recorder 148, 195

Manual 134, 140
map security roles 571–572, 574, 576–577,
579–580
Mapping

rules 207–209, 219, 221
maps 9, 14, 32, 128, 134–135, 190, 363
matching reference 425–427
materials

additional 442, 445, 447–448, 450, 465, 503
Max-Forwards 330–331, 334, 470, 475–476
Mb 34, 88
Media Gateway 33, 35–36

See also MG
Media Gateway Controller Function 33

See also MGCF
Media Resource Function 33

See also MRF
Media Server Function Control 36
Mediation

flow component 122
flows 60, 120, 134–135, 142, 147, 150–151,
154, 157, 194, 524, 527, 529
module 122
primitives 60, 135, 146–150, 154, 156–157, 194

custom 147, 150
service applications 147
services 60, 147
services intercept 60

members
available 357, 359, 435–436
new 378, 380–381

message
body 9–10
content 212–213, 216

messaging
applications 312
instant 4, 23, 25–26, 171, 182, 187
interface 58, 100, 633

Method
stubs 242, 261, 272–273, 350

Mg 33–35
MGCF 33–34, 36

See also Media Gateway Controller Function
Mi 34
Mj 34
Mk 34
Mm 34
Mobile Information Device Profile 20
models 20, 46, 188, 207, 338
Module

map 449, 459, 570, 572, 575, 577, 579–580
Name 362
SIP 70–71

MRF 33
See also Media Resource Function

MRFC 33–34
MRFP 33
multipart mime 331, 336, 357
multiplayer gaming 302, 305
Mw 34
Mx 34
MyImsProcessModule 127
MyService 131

BPEL 131
BPEL process 131
SIP 131

 Index 655

N
Name

field 558–561
port 628–630
server 628

network
elements 162, 197
servers 7, 23

Network Statistics Mediation 148
Network statistics mediation primitive 148
New

Condition 394, 396, 403, 407, 412
Server 280–281, 284, 287
SIP Servlet 239, 342, 344
SIP Servlet Wizard 239

node
choice 394, 396–397, 407–408, 411–413

notifications 59, 98, 180, 183–184, 188–189, 197,
199
NOTIFY 12, 24, 183, 187, 210, 296, 317, 324,
330–332, 336, 355–357

O
Open Service Access 37
Open Services Architecture 37
operation

makeCall 585
operators 29–30, 220
Optional mediation primitives 148

CEI event emitter 149
Group Resolution 149
Network statistics 148
Service authorization 149
SLA enforcement 149

OPTIONS 11–12, 24, 75, 129, 141, 209–210, 222,
250, 296, 305, 311, 325, 449, 459, 461, 464,
488–489, 491, 500, 519, 525, 543–544, 570–573,
575, 577–580
OptionsSipServlet

example 210
order

deployed application 221
originator 9, 11, 14, 333, 337, 339, 356–357, 359,
371–372, 390, 397, 403, 406–407, 435–436, 482
OSA application server 34
output

example trace 296
parameter values 134

P
Packaging 55, 63, 66, 141
packets 53, 181, 489–492, 634
palette 129, 147, 150, 417, 420, 423, 425–426
panel

transport chain 631–632
parameters 72, 347–348

numbered list of 590, 613–614
output 358–359, 372, 386, 401, 404, 409, 414

params 331–332, 446–447, 470
Parlay X 2.1

Resources 59
Parlay X Web Service Interface 325
ParseXML 336, 353, 355, 357–358
parsing 167, 210–212, 332, 335–336
participants 4–5, 28
Partner

selected 400, 404, 409, 414
Payment 59, 197
P-CSCF 32, 34
peer 5, 7, 12, 16, 171, 178, 274–276, 476, 633

remote 633
peer.req 274–276
peer-to-peer 5, 7, 16, 178
permissions 56, 186, 548, 610
Personal Data Assistant 31
PestControl 467–469
P-Headers 177
physical server 193
platform

application 165
service 163, 175–176, 545, 550, 585
service delivery 161

PME 184, 189
point-to-point relationships 25, 222
Policy Subscription 157
Policy/Subscription mediation primitive 148, 195
port number

correct 584
portlets 54, 64, 166–167, 169
portNumberDefault 353, 356
Presence

Resources 59, 90
Presence Server

components 100
deploy applications 611
directory 611

presencePublishT 617
presenceServerHostname 347, 353–354, 356

656 Developing SIP and IP Multimedia Subsystem (IMS) Applications

PresenceServerPortNumber 348, 353–354, 356,
457
presentities 182–184
problem determination 439, 480
Process

AddressList 390–391, 394–397
choice node 396–397

component file 425
ID 455, 485

processor 33, 88, 143, 442–443
processServerURI 348, 353–354, 359, 457, 482

private static string 353
production server 55
products 141–142, 301, 305, 312, 440, 522, 541,
546
profile creation 543, 587–588, 612, 626–627
profiles 281, 481–482, 484, 495–496, 518–519,
554
Program 54, 100, 134, 142, 461, 494, 523, 525

Files 494, 523, 525
Programmatic 134, 140, 226
Project Name 103, 111, 113, 237–238, 259, 279,
343, 582
properties

service-specific 56
protocols 5–6, 28–29, 35–36, 100, 146, 196–197
providers 20, 60, 147, 193, 200, 557, 559–560,
563, 595–596, 616–619
provisional responses 14, 22, 170, 216
Proxy

application 256
object 217–219
Server 5, 8–9, 11, 13–14, 17–18, 21, 32, 167,
171–172, 175, 183
Web 8

proxying 25, 217–219, 246
PS 471–472, 482, 611–612, 614–618, 621–623,
625

application 617, 621–622, 625
application server 617, 625

PsetControl
group 468–469

PSTN 6, 33–36, 146
networks 34

Public Switched Telephone Network 6
See also PSTN

Publish-Subscribe-Notify service 183
PXNotifyBus 555–558, 560–561
PXNotifyQueue 559, 561, 576

Q
QoS 29–30, 35–36, 167, 425
Quality of Service 29

See also QoS

R
Rational

Application Developer 141–142, 166, 525
Functional Tester 141
Performance Tester 141
Software Architect 141, 307, 494
Software Development Platform 141
Software Modeler 141
Web Developer 141

rb 471–472, 478
RC 325, 355, 474, 481
Real-time Transport Control Protocol 6

See also RTCP
reason-phrase 13, 15
receipt 9, 13–14, 207–208, 331, 393, 474
Red Hat Enterprise Linux 3.0 88, 143
RedbookGroup.xml 610–611
Redbooks Web site 645

Contact us xviii
Redirect Server 5, 9, 14, 18, 33
Redirection 9, 14, 212, 216
REFER 12, 23, 34, 123, 142, 188, 208, 215, 244,
296, 316, 325, 361, 427, 480, 482, 517, 540
Reference

Partner 387–390, 399–400, 404, 409, 414
points 28, 30, 33–34, 179

References 73, 75, 82, 123, 125, 127, 134, 200,
387, 425–427, 575

page 75, 82
Registrar

application 244
SIP Servlet 239, 242–243
SipServlet 242

Rename 393, 395–399, 402–408, 410, 412–415
req

createResponse 218, 243, 247
getApplicationSession 275
getParameter 263–264
getTo 218, 243, 246–247, 274
setAttribute 264

Request
getAttribute 265
line 11, 13

 Index 657

messages 10, 21, 25, 208
URI 12, 18

requesters 60, 146–147, 199
Resource List Server 183
resource-lists 191–192, 446–447, 610–611
Resources

Diameter 58, 90
Parlay X 2.1 59
Presence 59, 90

resp.getApplicationSession 274
Response

final 15, 230
informational 24
message 10, 13–14, 21, 23–25, 434
redirection 14, 216
Status 14, 610–611
Status Message 610–611
success 14, 216

retrieve
group information 331

Rf
accounting Web 58, 100, 181–182, 465,
625–626, 633
properties 633
services 98

RFC 4, 11–12, 22–23, 25, 35, 170–171, 174,
230–231, 244
RLS services 192, 467

documents 192, 467
usage 192
xlmns 447

rls-services 191–192, 447–448
Roaming 30
routing

intelligent services 5
service 316

RTCP 6, 35
See also Real-time Transport Control Protocol

RTP 6, 33, 35, 297
Rule 120–121, 124, 132, 135, 172, 201, 207–209,
219–221, 226, 311

group 124, 136
sets 134–135, 201

runtime environment 51–52, 142, 231, 361
runtimes 151, 430–431, 523, 525, 529

S
Sample

application
design 312
environment 449, 471, 478, 481–482, 484,
496
scenario 101, 633
test environment 531, 623–624

application scenarios 502
code 214, 224, 342, 355, 357–360
IMS application 151, 157

test environment 439
IMS foundation application 101
SIP application 85, 233
SIP services 82
test environment 457, 461, 493, 541, 547,
589–590, 600, 613–614

sample
application development 507
service 341

Sample application
blocking 84

Sample SIP application 85, 233
SAR file 71–72, 360, 455–457, 459
SCA 121, 123–126, 130, 200, 312, 348, 353, 482

components 123–124, 126
See also Service Component Architecture

SCIM 302–303, 305
See also Service Capability Interaction Manager

S-CSCF 32–33, 101, 176, 197, 622
S-CSCF server 622
SCTP 35, 179
SDO 35, 121, 200

See also Service Data Object
security

page 75–79
roles 75–76, 226, 571–572, 574, 576–577,
579–580

Selector 124, 129, 136, 190–191
sequence

diagram 234–235, 257–258
Servers

billing 58, 100
Service

Architecture 38, 130, 302, 312
Authorization Mediation 149
building blocks 302, 306
capabilities 30, 39, 146
Capability Server 37
choreography 303–304

engine 304

658 Developing SIP and IP Multimedia Subsystem (IMS) Applications

components 121–122, 130
composition 302–303, 306
configuration information 197
consumers 200
creation 28, 30, 39, 43–45, 51–53, 55–57,
160–161
creation domain 160
creation environment 43, 45, 51, 53, 57, 161
Delivery Platform 161
development 44–45, 159, 161

environment 161
endpoint 336
error 583
exception 435
execution 44, 60–61, 159, 161–162, 164, 173
execution environment 44, 60–61, 159, 162,
164
execution platform 162, 173
full cycle development 44–45

service architecture 130, 312
Service authorization mediation primitive 149
Service Capability Interaction Manager 302

See also SCIM
Service Component Architecture 121, 130, 200,
312

See also SCA
service components 130
Service Creation Environment 43, 45, 51, 53, 57,
161
service creation environment 51, 57
Service Data Object 121, 200

See also SDO
Service delivery environment 161–162
service enablers 39, 57, 61, 162, 164–165, 182,
313

common 182
modular 61, 164–165
prebuilt IMS-compliant 162

service execution environment 61, 164
service FindHelp 469
service identification 306
service implementations 57, 146, 149, 196–199
service interactions 200
service interface 307, 321, 325, 378, 435, 486
service invocation

dynamic 148
Service Invocation Mediation 148
service invocation mediation 148, 195
Service invocation mediation primitive 148, 195

service logic 49, 160
service method 23, 25, 207–208
service modules 132–133
Service Orchestration 170, 302, 305–306, 311
Service Oriented Architecture 165

See also SOA
Service Pack 442
Service plane 312
service plane 36, 39, 160, 174, 176, 179, 312
service plane architecture 312
service plane solutions 312
service platform 163, 175–176, 545, 550, 585
Service Point 176
service policies 146
Service Policy Manager 146, 193, 199, 549
Service Policy Manager Database 549
service provider 149, 194, 197, 313–314, 323
Service Proxy 175
service request 175, 333
service requesters 147
service requirements 44
Service SIP Servlet 132
Service SIP Servlet wrapper 132
service ThirdPartyCall 585
service topic 440, 447, 466–467
service usage 199
service usage record 199
ServiceError 379–380
ServiceException 379–380, 410, 583
service-oriented architecture 57, 162, 165, 170,
193, 200

See also SOA
Service-oriented modeling 306
ServicePlatform 545, 548, 550–551
services

accounting 35, 180
component 120
componentized 120
compose 302
diameter 178, 180
lockout 323
multimedia 28–29, 31
non-IMS 160, 163

services architecture 38–40
services integration 28, 312
services plane 165
servlet

container 23, 25, 168, 206–208, 226
deployment descriptor 68, 240–241, 260, 272,

 Index 659

277, 346–347, 349–350
dialog 260–261, 271

servlet-class 215, 268
ServletConfig 25, 269, 352, 354
ServletContext 25, 72, 213, 225, 227–228, 277,
352–356
ServletException 210, 214, 217, 227, 242–243,
246, 263, 269, 275–277, 354–355, 357, 360
servlet-name 214–215, 221, 228, 268
ServletResponse 269
ServletTimer 225
Session Initiation Protocol 3–4, 22–23, 25, 35, 66,
69, 82, 167, 182
Session management 4–5, 28, 32, 167, 208
Session setup 5
setAttribute 222, 264, 274–278, 355, 357
Sh 34, 59, 97–98, 101, 110, 118, 179–182,
446–447, 541, 547–554, 581–582, 587, 589–590,
600–601, 610–613, 617, 625–626, 628–629
Sh services 59, 98
Sh subscriber profile 59, 98, 181–182
Si 34, 540, 554–557, 570
SI Bus 540, 554–557, 570

See also Service Integration Bus
See also Service Itegration Bus

Signaling gateways 33
SIMPLE 4–5, 17, 19, 26, 53, 55, 60, 83, 86, 123,
139, 166, 171–172, 182, 189, 210, 217, 233–234,
242, 256, 307
Simple Mail Transfer Protocol 5
Simulated CCF 441
simulated FindHelp Caller location 450
Simulated Location 441, 444, 448–449, 483, 496
Simulated Location Server 441, 448, 483, 496
SIP

based services 196
call flow 17, 19
communication 7, 307, 309
components 15, 55
container 23, 69, 167, 169–170, 172, 182,
206–207, 210, 215–217, 221, 229, 294, 297
content 69–70, 72
converged 49, 65–66, 69, 71, 163, 169, 233,
258, 280, 307
developing 43, 50–51, 66, 205, 228, 230, 234
dialogs 16, 171, 208, 273, 309, 353
extension 23, 25, 171, 182
interface 20, 187, 257
phone 85, 87, 209, 318, 329–330, 333, 464,

477
project 55, 59, 67, 71–72, 75, 90–93, 105,
236–238, 258, 335, 342–344, 361
sessions 11, 17, 310
signaling 4, 9, 32, 36, 165
softphone 441, 445, 449, 469–471, 474–475,
477, 485, 505, 507
stack 20–21, 61, 167
tool 85, 87
transactions 15–16
URI 5–6, 176, 192, 254, 330, 336, 354, 357,
359, 445, 473, 492

SIP ACK 24, 325, 474
SIP addresses 337, 583
SIP Application 3, 23, 26, 33–34, 49, 54–56, 63,
65–67, 71–72, 85, 167–168, 170, 173, 205–207,
209, 215, 217, 223, 229, 231, 233–235, 249–250,
256, 304, 440, 478

developing 205, 234
elements of 209
packaging 66
project 235
server 34, 55–56, 173, 304, 440, 478
session 168
support 167, 173

SIP Application Archive 250
SIP Application development 54, 65
SIP Application Resource 66
SIP architectural components 7
SIP AST 500, 502
SIP B2BUA 33, 37
SIP deployment descriptor 72
SIP deployment descriptor editor 66, 72–73
SIP Facets 92
SIP INVITE message 8, 12, 18, 325
SIP messages 9–10, 32, 36, 53, 66, 168, 172, 174,
206–207, 230, 294, 318–320, 322, 471–472,
477–478, 488
SIP method 12, 24, 100, 171, 176, 182–184, 187,
189, 197, 210, 296, 324, 330, 354–357, 622

BYE 11–12, 19, 24, 208–209, 272–276, 278,
296, 325, 334, 360, 474–475, 477
CANCEL 8, 11–12, 24, 208–209, 215, 217,
264, 296
INFO 12, 22, 24, 101, 126, 170–171, 177, 210,
225, 243–246, 263, 270, 274–278, 294, 296,
324–325, 334, 354–360, 474, 476, 484, 487,
491
NOTIFY 12, 24, 183, 187, 210, 296, 317, 324,

660 Developing SIP and IP Multimedia Subsystem (IMS) Applications

330–332, 336, 355–357
OPTIONS 11–12, 24, 75, 129, 141, 209–210,
222, 250, 296, 305, 311, 325, 449, 459, 461,
464, 488–489, 491, 500, 519, 525, 543–544,
570–573, 575, 577–580
REFER 12, 23, 34, 123, 142, 188, 208, 215,
244, 296, 316, 325, 361, 427, 480, 482, 517, 540
REGISTER 9, 11–12, 17–18, 21, 24, 176, 180,
183, 209, 211, 216, 222–223, 234, 240–243,
266, 286, 316, 330
UPDATE 12, 15, 23, 59, 143, 180, 182, 242,
244, 262–266, 268, 442, 463, 489, 509,
521–523, 586, 611, 622, 626

SIP Module 70–71
SIP network server 7
SIP Parlay based services 196
SIP protocol 13, 20–23, 25, 53, 124, 207–208, 213,
215, 229–230
SIP proxy 8–9, 11, 21, 32–33, 37, 171–172, 175,
197, 212, 231, 586

server 8–9, 11, 21, 32
SIP Redirect Server mode 33
SIP Register message 9
SIP requests 11–12, 25, 175, 177, 207, 209–210,
216, 219, 222, 272
SIP response messages 13
SIP responses 13, 25, 208, 216
SIP servers 5, 32, 36, 59, 462
SIP Servlet 23–26, 49, 55, 59, 65–69, 71, 74,
76–77, 83, 86, 101–102, 107, 124–126, 131–132,
163, 166–167, 169–170, 205–209, 212–213,
216–219, 221–226, 228–231, 235, 238–243, 245,
247, 270–271, 273, 277, 307–311, 313, 328–329,
332–338, 341–346, 348, 350–354, 361, 368, 420,
427, 430, 440, 442, 444, 455, 458–459, 478,
481–484, 496

API 23–24, 59, 67, 101, 205–207, 209, 222
API specification 206
applications 49, 65, 69, 228–230
client 420
code 311, 352
container 206–207, 226
create 239–241, 271
deploy 166
deployment 68, 71, 277
deployment descriptor 68, 277
deployment descriptor information 68
design 328
developing 205, 228, 230

developing applications 228
development 65, 342, 361
FindHelp 478
implementation 335
interact 313
listener types 224
methods 206
pass-through 308
proxies 218

SIP Servlet method
doAck 24, 107, 209
doBye 24, 107, 209, 273, 275
doCancel 24, 209
doError 107
doErrorResponse 24, 216, 273
doInfo 24, 107, 210
doInvite 24, 107–108, 208–209, 246, 350,
354–355, 481
doMessage 24, 210
doNotify 24, 210, 350, 357–358, 482
doOptions 24, 209–210
doPrack 24, 210
doProvisionalResponse 24, 216, 273
doRedirectResponse 24, 216
doRegister 24, 209, 242–243
doResponse 23, 25, 107, 216
doSubscribe 24, 210
doSuccess 107
doSuccessResponse 24, 208, 216, 273–274,
289, 350, 360

SIP User Agent 7–8, 16, 21, 252
client 307
server 37

SIP Web Services 305, 307, 310
SIP Working Group 4
SipAddress 25
SipApplicationSession 25, 213–214, 222–225,
227–228, 231, 263, 268, 274, 276, 278

appSession 214, 225, 228, 263, 274, 276, 278
expiration 223
links 222
object 227
session 224

SipApplicationSessionEvent 224
SipApplicationSessionListener 223–224

example 224
interface 223

sipFactory 25, 213–214, 227, 262–263, 275–277,
353, 355–356

 Index 661

createURI 214, 263
SipListener 21

interface 21
SIPMessageFactory 296
SIPmethod

ACK 11–15, 18–19, 24, 209, 217, 224, 275,
296, 325, 474, 476
INVITE 4, 8, 11–12, 14–15, 18, 21, 24, 83, 86,
109, 176, 208–209, 214–215, 220–221, 231,
234, 245–246, 264, 274–276, 296, 323, 325,
329–330, 332, 336, 349, 354, 357, 474–475,
484–485

SIPModule 92
SIPp 53, 85, 87, 316, 318, 329–330, 334, 354, 437,
441–442, 445, 460–461, 469–474, 477–479,
481–482, 485, 494

installation 460–461
logs 494
script 316, 329, 474, 477–478, 481, 485

SIPphone 329–330, 333, 437
SIPPING 4, 171
sipPort 356
SipProvider 21–22
SIPReadHandler 296
SipServlet 25, 67, 209–210, 213–215, 217, 227,
242–243, 246, 263, 270–272, 277, 294, 353
SipServletMessage 25, 210, 212, 227, 336
SipServletMessage interface 210, 212, 227
SipServletRequest 23, 25, 207–208, 210,
214–215, 217, 243, 246, 274–276, 355–357, 360

createRequest 214–215
request 207–208, 210, 217

SipServletResponse 23, 25, 207–208, 210,
212–213, 217, 243, 246–247, 274–275, 355, 358,
360

classes 23
peerResp 275
response 207–208, 210
ringing 355
SC 212, 243, 247

SipSession 25, 208, 213–215, 222–224, 231, 273,
275–276, 278, 353, 360

dialog 275
interface 208, 222

SipStack 21
SIPUdpConnect 296
SIPUdpConnection 296
SipURI 219, 263, 274, 276, 353, 356
SIP-version 13

sipXphone 53, 252, 254–256, 286–287, 289–290,
292, 318, 441, 460–464, 474, 494–495, 503–505

installation 252, 504
SJphone 441, 460, 464, 495, 507–508
SLA enforcement mediation primitive 149
SLF 32, 34, 179

See also Subscriber Location Functions
SMS Service 131
SOA 57, 162, 165, 170, 193, 200

See also Service Oriented Architecture
See also service-oriented architecture

SOAAdministrator 571–572, 574, 576–577,
579–581
SOAO 57, 120, 162, 165, 199–201, 306, 312,
583–586
SOAP 60, 167, 333, 421, 432, 583
SSL 629–630, 632–633
Stand-alone references 123
standardized interfaces 20, 30, 60
State machine 120, 124, 134–136, 201, 229, 319
Stateless SIP Proxy 212, 231
Status

code 13–15
line 13
OK 407–408, 410, 412–415

SUBSCRIBE 12, 24, 100, 171, 176, 182–184, 187,
189, 197, 210, 296, 324, 330, 354–357, 622
subscribe 12, 24, 100, 171, 176, 182–184, 187,
189, 197, 210, 296, 324, 330, 354–357, 622

message 330, 354
requests 24, 182–183, 622

Subscriber Location Functions 32
See also SLF

subscriber profile information 181
Subscriber Profile Services 180
subscribers 30, 183, 187, 315–316, 319–320, 322
subscription 26, 32, 34, 59, 100, 148, 171, 179,
183–184, 186, 195, 324, 330–331, 481, 617
Substitute 447, 471–472, 478
Success 14, 213, 216–217, 274, 323–324, 537
SuSE Linux Enterprise Server 9 143
SystemOut.log 495, 583, 585
Systems Management Services 160

T
TCP 168, 179, 212, 253, 331, 462, 471–472,
477–478, 628, 630–631
Telecom Web Services

662 Developing SIP and IP Multimedia Subsystem (IMS) Applications

Access Gateway 146, 148–149, 193–195
Server 61, 145–146, 150–151, 165, 193–194,
196–197, 316, 322, 339, 379, 440, 443, 524, 540
Toolkit 50–51, 57, 60, 119

Telecommunications Technology Association of
South Korea 28
Terminal Status 59, 198
TerminalLocationImpl 339, 377–378, 389, 423
TerminalLocationImport 423–425, 452–453

component 423
Properties 452

Test
component 137, 433
editor 138–140, 433
environment 59, 134, 166, 252, 294, 430,
439–442, 444–445, 455, 457–458, 461, 466,
493, 517–519, 531, 541, 547, 589–591, 600,
613–614, 623–624
SIP applications 66, 85

TestServer
jar 465

Third Party Call
application 177, 222, 256–258, 286–287, 289
Control 259–260, 265–266, 277, 279, 287, 289,
337, 425, 453
Control Partner 390, 409, 426
Controller 214–215, 277
Import 425–426, 453

component 426
Properties 453

interface 153, 339, 410
Partner 426
Server 87, 263
Web Service 580, 586

TimerListener
interface 225

TimerService
object 225

TISPAN 29
toSipURI 263–265, 277
Transaction recorder 155–157

mediation primitive 148, 195
transactions 15–16, 20, 178, 180
Transport 6, 28, 33–36, 160, 179, 212, 216, 226,
312, 331, 421–422, 470, 475–476, 630–632

plane 36, 160
TWSS

Administration Console 583–586
application 583

Components 545
Core Web Services 584
default message flow 149–150
deploy applications 540, 570

U
UDP

message 481
port number 471–472

UE 31–32, 34
See also User Equipment

UMTS 29
See also Universal Mobile Telecommunications
System

Unified Service Creation Environment 45, 161
See also USCE

Uniform Resource Identifier 5
See also URI

Universal Mobile Telecommunications System 29
See also UMTS

UPDATE 12, 15, 23, 59, 143, 180, 182, 242, 244,
262–266, 268, 442, 463, 489, 509, 521–523, 586,
611, 622, 626
URI 5–6, 12, 18, 171, 176, 185, 190–192, 214, 217,
219–221, 231, 244–247, 254–255, 324, 329–332,
336, 339, 348, 353–355, 357, 359, 400, 404,
435–436, 445–447, 450, 468, 473, 482, 492,
583–584, 623, 631–632

See also Uniform Resource Identifier
USCE 45–50

See also Unified Service Creation Environment
Use data Type Variables 400, 404, 409, 414
User

capabilities 5
Databases 32
group 593–594, 607
ID 282, 547–548, 562, 589, 592–593, 600–601,
613, 628
information 36, 464–465
location 5
service 302, 306

User Agent
Back-to-Back 8, 37, 59, 175
Client 8, 14, 213, 215–216, 307–308, 310
Server 8, 14, 37, 183, 302, 305

User Equipment 31, 36
See also UE

Ut 34, 187

 Index 663

UTF-8 215, 268, 330–334, 358, 446–447, 470, 475,
481, 610

V
video 4–6, 29, 35, 162
Visual snippet 129–130, 134–135, 393, 395–396,
398, 402–403, 405–408, 410–411, 413–415
voicemail server 230

W
WAS

profile 586–587, 611, 626
See also WebSphere Application Server

Web
application 70, 72, 166, 268, 318
deployment descriptor 69, 72–73, 75–76, 228,
267–268, 277
interface 85, 87, 199, 256–257, 461
proxy 8
server 5, 505
sites 335
tools 54, 58, 64, 78

Web Service
application 100
call flow 329
code 335
consumer 310, 435
Interface 307, 321, 325, 435, 486
operations 149
Ports 378, 380–381
Properties 582
requests 146, 181
response 333

Web Services
administrative 199
connectivity 52
core TWSS 583
endpoint 126
Explorer 582
Implementation 197
Interface 180
Platform 584

Web Services Description Language 60, 124, 182
See also WSDL

web.xml 69, 71–72
WEB-INF 69, 72, 377, 379, 381
WebSphere

Application Server Toolkit 50–51, 53, 55,

63–64, 89, 233–234, 236, 319, 342, 455,
500–501

install 236, 500
Diameter Enabler 180–181, 340, 380–381,
625, 633
Enterprise Service Bus 52, 60–61, 120, 122,
142, 148, 165, 194, 199–201, 312, 518
IMS Connector 56, 164, 173
Integrated Solutions Console 592, 594–596,
602, 604, 606–607, 615–619, 621–622
Message Broker 312
Telecom Web Services Server 61, 150–151,
165, 194, 316, 322, 339, 379, 440, 443, 540

WebSphere Application Server
install 532
integrated 525
LaunchPad 500
Network Deployment 172, 185, 200, 500,
532–533, 625
Node 448, 458
product 167
profile 586–587, 611, 626
Service Integration 554

WebSphere Integration Developer 57, 59–60,
119–121, 123, 126, 132, 141–143, 145, 150, 194,
200–201, 311, 320, 341–342, 361, 376, 430, 450,
477, 494, 515–517, 521–524, 526

See also WID
WebSphere Process Server

Console 479, 482, 486
EAR 621
key abstractions 121
support 121

WID 119–120, 124, 130, 134, 136, 146, 150–151,
494, 521, 526–527, 529

See also WebSphere Integration Developer
Windows

2000 88, 142
2003 142
XP 88, 143, 442
XP Professional 143, 442

Wiring
Advanced 425–427

WLAN 29, 31
WPS

console 483, 486
WPSSetDB2Tables.sh 612–613
WS-Addressing service 383
wsadmin 166, 571–574, 576, 578–579, 581, 600,

664 Developing SIP and IP Multimedia Subsystem (IMS) Applications

628
WS-BPEL 122, 201
WSDL

files 65, 90, 123, 128, 133, 364, 373, 375,
379–381, 387, 427, 430, 582
See also Web Services Description Language

WTP 58, 509–511, 514–515

X
XCAP

Application User IDentifier 191
interface 187, 190
See also XML Configuration Access Protocol
server 190, 192–193
User Identifier 191–193

XDM 190, 192, 609
See also XML Document Management

X-Lite 252–255, 286–287, 289–290, 292–293, 297,
318, 505–506

installation of 505–506
XML

body 330, 336, 357
documents 180, 187, 190

XML Configuration Access Protocol 49, 190
See also XCAP

XML Document Management 190
See also XDM

xmlHttp 265–266
XUI 191–193

 Index 665

666 Developing SIP and IP Multimedia Subsystem (IMS) Applications

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Developing SIP and IP M
ultim

edia
Subsystem

 (IM
S) Applications

®

SG24-7255-00 ISBN 0738489573

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Developing SIP and IP
Multimedia Subsystem
(IMS) Applications

Hands-on
introduction to
toolkits and
development
environments

Learn to develop
converged and
composite services

Programming
guidelines and
working examples

The convergence of Internet Protocol (IP) networks is
enabling seamless communications that combine data,
voice, video and other information streams. The true value of
converged IP network however is realized through the
converged applications that leverage the network. The key
enabler to developing converged applications is the platform
for designing, developing, testing, and deploying applications
that integrate and compose services.

This IBM Redbook introduces IBM tools for creating
converged Session Initiation Protocol (SIP) and IP Multimedia
Subsystem (IMS) applications. It provides programming
guidelines and working examples that demonstrate how to
use the different development tools. It also provides hints
and tips that enable you to quickly get up to speed
developing converged applications.

The portfolio of products include the IBM WebSphere
Application Server Network Deployment, IBM WebSphere IP
Multimedia Subsystem Connector, IBM WebSphere Presence
Server, IBM WebSphere Telecom Web Services Server, and
IBM WebSphere Integration Developer.

This redbook is aimed at the diverse set of professionals that
design and develop SIP and IMS applications.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Introduction to SIP and IMS
	Chapter 1. Introduction to Session Initiation Protocol (SIP)
	1.1 SIP overview
	1.2 SIP architectural components
	1.3 SIP messages
	1.3.1 SIP requests
	1.3.2 SIP responses
	1.3.3 SIP transactions
	1.3.4 SIP dialogs
	1.3.5 A sample SIP call flow

	1.4 SIP Java development
	1.4.1 JAIN SIP API
	1.4.2 SIP Servlet API

	1.5 Examples of SIP application

	Chapter 2. Introduction to IP Multimedia Subsystem
	2.1 IMS overview
	2.1.1 IMS vision and history

	2.2 Elements of IMS architecture
	2.2.1 Functional components
	2.2.2 Reference points
	2.2.3 Protocols
	2.2.4 Functional planes

	2.3 Services in IMS
	2.3.1 Service architecture

	Part 2 Application development technologies
	Chapter 3. Introduction to IBM SIP and IMS service creation
	3.1 Overview
	3.2 IBM Unified Service Creation Environment
	3.3 Types of SIP and IMS applications
	3.4 The SIP and IMS service creation environment
	3.4.1 IBM WebSphere Application Server Toolkit
	3.4.2 IBM IMS Enablement Toolkit
	3.4.3 IBM Telecom Web Services Toolkit
	3.4.4 IMS Enablement Toolkit

	3.5 The service execution environment

	Chapter 4. IBM WebSphere Application Server Toolkit
	4.1 AST overview
	4.2 Developing SIP servlet application
	4.2.1 SIP only applications
	4.2.2 Converged SIP/HTTP applications
	4.2.3 SIP servlet deployment
	4.2.4 Sample SIP services
	4.2.5 Hardware and software requirements

	Chapter 5. IBM IMS Enablement Toolkit
	5.1 IMS Enablement Toolkit overview
	5.2 Developing IMS foundation applications
	5.2.1 Diameter client application
	5.2.2 Presence Server components
	5.2.3 Parlay X Web Services

	5.3 Sample IMS foundation applications
	5.3.1 ISC Interface sample
	5.3.2 Diameter client samples

	Chapter 6. IBM WebSphere Integration Developer
	6.1 Overview
	6.2 Working with IBM WebSphere Integration Developer
	6.2.1 Key concepts
	6.2.2 Modules

	6.3 Components
	6.3.1 Business Integration perspective and views
	6.3.2 Adding custom logic to BPEL processes

	6.4 IMS service components
	6.4.1 Assembling components
	6.4.2 Component tests

	6.5 Technical information
	6.5.1 Packaging
	6.5.2 Supported platforms

	Chapter 7. IBM Telecom Web Services Server Toolkit
	7.1 Introduction
	7.1.1 Mediation services
	7.1.2 TWSS Mediation primitives
	7.1.3 TWSS default message flow

	7.2 The IBM Telecom Web Services Server Toolkit
	7.2.1 Importing TWSS mediation flows
	7.2.2 Working with TWSS mediation flows

	Chapter 8. Introduction to the IBM service execution environment
	8.1 Overview of the IBM IMS solution
	8.1.1 The service execution environment

	8.2 The IBM WebSphere Application Server
	8.2.1 WebSphere Application Server SIP support

	8.3 WebSphere IMS Connector
	8.3.1 ISC interface
	8.3.2 Diameter services
	8.3.3 IBM WebSphere Diameter Enabler

	8.4 WebSphere Presence Server
	8.4.1 IBM WebSphere Presence Server Component
	8.4.2 The Presence Management enabler

	8.5 IBM WebSphere Group List Server
	8.5.1 The role of Group List Management
	8.5.2 XDM/XCAP Interface

	8.6 Telecom Web Services Server
	8.6.1 Telecom Web Services Access Gateway

	8.7 Telecom Web Services Server service implementations
	8.7.1 Common components
	8.7.2 Service Policy Manager

	8.8 WebSphere Enterprise Service Bus
	8.9 WebSphere Process Server

	Part 3 SIP applications
	Chapter 9. Developing SIP applications
	9.1 Overview of SIP applications
	9.1.1 SIP Servlet container

	9.2 SIP Servlet
	9.2.1 Differences between SIP and HTTP Servlet
	9.2.2 Converged servlet

	9.3 Elements of SIP applications
	9.3.1 Receiving requests
	9.3.2 Parsing messages
	9.3.3 Creating responses
	9.3.4 Creating requests
	9.3.5 Receiving responses
	9.3.6 Proxies
	9.3.7 Mapping requests to servlets
	9.3.8 Sessions
	9.3.9 Listeners and events
	9.3.10 Timers
	9.3.11 Security
	9.3.12 Converged servlet

	9.4 Best practices
	9.4.1 Application layering
	9.4.2 Message processing
	9.4.3 Implement specification design requirements
	9.4.4 Runtime development considerations

	Chapter 10. Sample SIP applications
	10.1 Application overview
	10.2 Registrar and proxy application
	10.2.1 The scenario

	10.3 Creating the SIP application project
	10.3.1 Developing the SIP Servlets
	10.3.2 Configure User Agents
	10.3.3 Testing the Registrar and proxy application

	10.4 Third Party Call Control application
	10.4.1 Overview
	10.4.2 Develop using the Application Server Toolkit
	10.4.3 Compose the Application
	10.4.4 Deploy the converged SIP/J2EE application
	10.4.5 Testing the Third Party Call Control application
	10.4.6 Debug and trace the application

	Part 4 Developing IMS applications
	Chapter 11. Designing IMS services
	11.1 Overview of IMS composite services
	11.1.1 Composite services architecture

	11.2 Composite services choreography
	11.2.1 Composite services orchestration

	11.3 Designing composite services
	11.3.1 Design process
	11.3.2 SIP Servlets as Web Services
	11.3.3 Deciding when to use BPEL
	11.3.4 Choosing ESB Software

	11.4 Sample application design
	11.4.1 Objectives of the sample application
	11.4.2 The business scenario
	11.4.3 The use case model
	11.4.4 The component model
	11.4.5 Component flow

	11.5 SIP Servlet design
	11.5.1 BPEL design

	Chapter 12. Implementing the IMS sample service
	12.1 Implementation overview
	12.2 SIP Servlet development
	12.2.1 Create a new SIP project
	12.2.2 Create a new SIP Servlet
	12.2.3 Complete the SIP Servlet code
	12.2.4 Export the application for deployment

	12.3 BPEL development
	12.3.1 Create a new business integration module
	12.3.2 Create the business object
	12.3.3 Create the interface for the BPEL process
	12.3.4 Import the WSDL files
	12.3.5 Create the business process
	12.3.6 Add partner references
	12.3.7 Add process logic
	12.3.8 Assemble the FindHelp module

	12.4 Export the FindHelp WSDL files
	12.4.1 Unit test the FindHelp module

	12.5 The location simulator

	Chapter 13. Sample IMS application test environment
	13.1 Overview of the test environment
	13.2 Setting up the test environment
	13.2.1 Group List Server setup
	13.2.2 Location server setup
	13.2.3 Application deployment
	13.2.4 Device client setup
	13.2.5 Installing the IBM Diameter CCF Simulator

	13.3 Executing the test scenarios
	13.3.1 Use Case 1: Administrator adds service topic
	13.3.2 Use Case 2: Publish Technician Status
	13.3.3 Use Case 3: Caller requests FindHelp Service

	13.4 Problem determination and resolution
	13.5 Step-by-step tracing
	13.5.1 Enable SIP debug tracing on the Linux test server
	13.5.2 Tracing SIP messages using Ethereal

	13.6 Log files

	Part 5 Appendixes
	Appendix A. Installing the application development environment
	A.1 Installing the SIP AST
	A.1.1 Starting the SIP AST

	A.2 SIP device client installation
	A.2.1 SipXphone
	A.2.2 X-Lite
	A.2.3 SJPhone

	A.3 Installing the IMS Enablement Toolkit
	A.3.1 Verify the installation of the IMS Enablement Toolkit

	A.4 Installing WebSphere Integration Developer
	A.4.1 Update WebSphere Integration Developer
	A.4.2 Apply required fixes

	A.5 Installing the Telecom Web Services Server plug-in
	A.5.1 Extract the ESB mediation flows and import them into WID

	Appendix B. Installing the sample application test environment
	B.1 IBM WebSphere Application Server 6.1
	B.2 IBM WebSphere Telecom Web Services Server
	B.2.1 Create the WebSphere Application Server profile
	B.2.2 Install base binaries
	B.2.3 Configure DB2
	B.2.4 Configure Service Integration Bus
	B.2.5 Configure JDBC
	B.2.6 Tune the Application Server
	B.2.7 Deploy TWSS Applications
	B.2.8 Verify the installation
	B.2.9 Troubleshoot the installation

	B.3 IBM WebSphere Group List Server component
	B.3.1 Install base binaries
	B.3.2 Create WebSphere Application Server profile
	B.3.3 Configure DB2
	B.3.4 Configure the LDAP directory
	B.3.5 Configure users and groups
	B.3.6 Configure JDBC and data sources
	B.3.7 Tune the Application Server
	B.3.8 Deploy GLS application
	B.3.9 Install the Self Care portlet
	B.3.10 Install the command line interface
	B.3.11 Administration

	B.4 IBM WebSphere Presence Server component
	B.4.1 Install base binaries
	B.4.2 Create WebSphere Application Server profile
	B.4.3 Configure DB2

	B.5 Create the Service Integration Bus and bus members
	B.5.1 Configure JDBC and data source

	B.6 Deploy PS application
	B.7 IBM WebSphere Diameter Enabler component
	B.7.1 Install base binaries
	B.7.2 Create WebSphere Application Server profile
	B.7.3 Deploy the Diameter Enabler application on WebSphere Application Server
	B.7.4 Deploy Diameter Rf Web Services

	Appendix C. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

